
 1

Integrating FPGA Technology
and

Database Management Systems on Solaris Systems

Daryl Popig1, Debra Ryle1 and Eric Stahlberg2

1Franklin University, 201 South Grant Street, Columbus, OH 43215

Email: {ryle01, popig01}@email.franklin.edu
2 Ohio Supercomputer Center, 1224 Kinnear Road Columbus, OH 43212

Email: eas@osc.edu

Abstract
Database management systems have evolved as efficient mechanisms to manage large
and diverse amounts of data. Rapid searching and analysis of database information is a
normal requirement of most database management systems. This can be a particularly
challenging aspect to maintain with semi-structured or unstructured data. The advent of
more readily programmable Field Programmable Gate Array (FPGA) systems offers a
significant opportunity to address the challenge of rapid searching for semi-structured or
unstructured data within the context of a database management system. Combining the
robust Sun operating environment for databases with the custom programmability of the
FPGA provides a particularly suitable solution environment. By researching the problem
of searching relational databases in general, and life-science databases in particular, this
presentation will cover the steps taken and recommendations made for generally
integrating FPGA technology for use with database management systems.

1. Introduction

Efficient database searching remains a
key priority for businesses today. The
increased effort to bring increasing
amounts of unstructured data under
management adds a unique challenge to
maintaining high-speed searching. The
traditional approach remains to create,
manage, and update large numbers of
indexes to achieve fast searching.
Unfortunately, this requires that the
indexes become very large while pre-
computing and storing predicted search
elements for unstructured data.

Field Programmable Gate Arrays
(FPGAs) have demonstrated promise of
potential increased speed for searching
unstructured bioinformatics data for a

number of years with such products as
the DeCypher system from TimeLogic
Inc. Recent availability of sufficiently
capable and programmable FPGA
hardware in enterprise-class systems has
opened the door for closer integration of
FPGA technology in enterprise
operations.

This project’s objective was to explore
the feasibility of using specialized
external FPGA hardware to rapidly
search through largely unstructured data
stored in an enterprise database
management system. This paper
explores integration between database
and hardware technologies to deliver
acceptable performance for complex
data searching. By utilizing the FPGA
technology for search algorithms, we

 2

take advantage of the low level
hardware’s inherent parallelism to
increase the speedup of the search
process. Searches were initiated from a
Solaris system running a high
performance Oracle database utilizing a
FPGA accelerator with high bandwidth
and low latency interconnects. The
hardware was custom programmed for
the desired search criteria.

2. Motivation

Increasing amounts of bioinformatics
and chemistry data are being collected in
databases as a result of more pervasive
laboratory automation. Frequently, the
information collected is unstructured and
unindexed due to the variability of the
experiments, equipment, and diversity of
research exploration. Providing an
additional challenge is the limited
support for unstructured text searching
with standard SQL. Rather than attempt
to impose a common data structure and
large amounts of indexing on the
collected information, we decided to
pursue a project to exploit FPGA
technology and search the information in
a raw and largely unstructured form.

OSC has utilized FPGA hardware in its
operational environment since 2001,
utilizing the TimeLogic DeCypher
system for high-speed bioinformatics
sequence searching. Specific canned
algorithms were provided by the vendor
for common algorithms of BLAST,
Smith-Waterman, and Hidden-Markov
Model searching. The FPGA accelerated
algorithms regularly demonstrated
search speedups on the order of 40 to
100 times relative to non-FPGA
implementations. Unfortunately, the
closed environment of the TimeLogic
system precluded extending the

technology for more generalized
searching.

Rather than make the simplifying
assumption that the database system and
FPGA would co-exist on the same
system, we decided to define the project
scope to depict an existing production
enterprise database environment. In this
case, we chose the common scenario of
an Oracle 10G database running on a
Solaris server. We further decided to
focus efforts early on the common need
for rule-based and “fuzzy” string
searching in a largely unstructured
domain of character data -- in this case
chemical and bioinformatics data.
By focusing on string searching as the
prototype implementation, the
technology and capabilities
demonstrated in the project have direct
application in many other general
database searching situations.

Having completed the proof-of-concept
project, a noninvasive development
environment is created for defining and
testing more complex search algorithms,
specifically for bioinformatics data, two-
dimensional chemical structure data, and
three-dimensional spatial searching
where the parallelism available in the
FPGA can be more completely
exploited.

Advantages of FPGA Searching

The advantage of reconfigurable
computing opens the possibility of using
hardware to implement or enhance a
specific algorithm through hardware
acceleration. As the gate densities
increase in the newer FPGA devices, and
as better development tools emerge for
using them, more opportunities are now
available for implementing this type of

 3

reconfigurable hardware into an FPGA-
based computing platform.

A FPGA is a microchip that contains an
array of configurable logic blocks that
act as programmable elements and a
programmable switch matrix. These
blocks are routed internally through the
column-based channels (switch
matrixes) that can interact with other
programmable blocks, or it can be routed
to an external I/O pin. Current FPGAs
can contain well over one million logic
elements along with SRAM including
microprocessor cores. These FPGAs can
easily be programmed by sending a bit
pattern stream to the standard JTAG
port. After programming is complete, the
device is ready to be used.

The benefits of FPGAs in
supercomputing are realized when
intensive computations are being done in
parallel inside the hardware. This will
free other processors to do other work
tasks. FPGAs perform tasks much more
efficiently than a software program
doing the same calculation by going
through a series of steps. To contrast
this, a serial program or thread has to
fetch each instruction and then execute
it. These fetch and execute instructions
eat CPU cycles. As a large volume of
data manipulation is involved, a high
number of CPU cycles will be eaten by a
software solution. However, with FPGA
hardware, there is no fetch and execute
cycle. The data is streamed in and
usually some sort of combination logic is
used to look for patterns or high-speed
logic blocks such as adders, matrix
multiply, or shifting operations are used.
The comparison is performed on the data
at the FPGA’s clock speed of 150 to 200
Mhz, providing the potential for a very
large speedup over that of the pure

software solution. With the trend of
larger gate counts and faster clock rates,
the potential of FPGA accelerated
database searching becomes increasingly
significant.

3. Equipment and Environment

This project was completed using
systems at the Ohio Supercomputer
Center Springfield (OSC-S) site, which
focuses on data-intensive computing
infrastructure and applications research.

Networking Interconnect Environment

OSC Springfield is connected to the
primary OSC site through Ohio’s Third
Frontier Network (TFN). TFN, a
statewide fiber-optic network managed
by OSC, connects major metropolitan
areas in Ohio with high network
bandwidth. Internal connectivity
between the database server and external
FPGA host system consists of gigabit
ethernet connectivity.

Database Server Environment

A Sun V1280 operating Solaris 9 was
used as a representative mid-size
enterprise database server. Oracle 10G
(10.1.0.2) was chosen as the database
management system for this project.
Oracle is widely used for scientific data
storage and offers seamless application
integration with “C” and Java, as
required to communicate between the
FPGA and the end-user client sessions.
The FPGA API required “C” for
programming interfaces between the
database and FPGA. We were able to
leverage Oracle’s PL/SQL feature to
execute external “C ” procedures
launched from a client’s JDBC session,

 4

passing the query criteria and data to the
FPGA for processing.

FPGA Environment

The FPGA hardware environment used
for this project was hosted on the Cray
XD1 high performance computer
system. The current system
configuration breaks down as:

 Twelve 64-bit AMD Opteron

processors configured as six two-
way symmetric processors (SMPs)
with a clock frequency of 2.2 Ghz.
running on Linux

 Twelve Rapid Array Processors for
handling the communications within
the chassis switch fabric

 Six Xilinx Virtex-2 FPGA of part
type XC2VP50 with a clock
frequency of 199 MHz acting as
application acceleration processors

The FPGA is accessed by the Opteron
processor through the HyperTransport
bus interface, which is running at 800
MHz with 16-bit transfers being done on
every clock. The FPGA is a 128 Mbyte
window mapped into the virtual address
space of the Opteron processor. A set of
API functions written in “C” are used to
interface to the FPGA. HyperTransport
requests are issued to the Rapid Array
Processor (RAP) when the Opteron does
a read or write access to the FPGA
address space. These Read/Write
requests are forwarded by the RAP to
the FPGA through a RapidArray
Transport (RAT) interface. This
interface is provided by Cray as a VHDL
core and as part of the internal FPGA
interface logic in the RT core. The RT
core is essentially a state machine that
has a transfer start, data valid, read/write
strobes and address decode along with

RapidArray fabric request
acknowledgements. The speed of the
RAT matches that of the HyperTransport
bus, but has a simpler protocol to reduce
the logic inside the FPGA.

Figure 3.1 FPGA Internal Architecture

All of the FPGA code and the substring
search code were written in VHDL using
the Xilinx ISE software version 6.3 on a
Windows XP platform. VHDL is a type
of hardware descriptive language and
was chosen as our programming tool due
to Cray’s previous application
accelerator development with the Xilinx
ISE tools.

4. Technical Approach

Programmable FPGAs can be easily
integrated into an enterprise
infrastructure to validate the impact on
database searching. Relational database
management systems such as Oracle,
DB2, MYSQL and SQLServer, offer
high performance techniques to store
and retrieve data. Integration with
Oracle utilized PL/SQL packages and
“C” shared libraries to retrieve data and
send information through network

 5

connections to a remote host with an
FPGA for searching. A simple substring
search was chosen as the remote FPGA
search program to provide comparability
to functionality present with standard
SQL.

The Substring Search

Our initial research showed that a simple
brute force strategy would be just as
effective as a more complicated search
algorithm. This project’s application
made use of 11 quadword size (64 bits)
user registers accessible to the Opteron
processor. Three registers were used
together to make a word width of 24
bytes in length. Three were used for the
search key, three for the search data, and
three for a key mask. The other two
registers were used for control and to
read the search results.
We set our word lengths at 24 bytes.
This was accomplished by using three
sets of three 64-bit user registers as
shown in Figure 4.1. These register sets
supported the following:

 Input data string to be searched
 The search key
 A mask to handle variable length

search strings

When new data is written to the FPGA
registers, a bit called “new data” is set.
This bit causes the key, data, and mask
to be loaded into the substring search
registers on the final data write. When
new data is cleared, the synchronous
search is started and the data shifting is
clocked at the FPGA user clock
frequency.

Figure 4.1 – FPGA Application - Search
Matching Logic

The steps involved at the hardware level
for exact string matching are as follows:

1. Shift each byte in the data register to

the left, and then feed the top byte
back to the beginning.

2. Compare the data register against the
mask register (all bits on), with an
“AND” operation to mask off bytes
that are outside of the key length.

3. Store the result of the “AND”
operation into a temp data register.

4. Check to see if the key is the same as
the shifted/masked-off data by doing
a comparison. If they are equal, set
the LSB position in the result
register.

Database and Application Integration

The first challenge was to determine
how the client would reach an
application that could send data to the
FPGA for processing and return the
results back to that session. We want the
client to reach this application through a
“thin-layer” browser session using JDBC
connectivity to the Oracle database.
Once the request is sent to the Oracle

 6

database, PL/SQL packages are executed
to retrieve data and send rows out
externally by calling a “C” shared library
file to pass data to the FPGA. This
client session remains persistent waiting
for results of matching rows to be
returned to the FPGA.

The second challenge was to determine
how to communicate seamlessly
between the database and FPGA
although they were not running on the
same server. The FPGAs were installed
on a server inside a Linux cluster that
was not directly reachable from the
database server. Ideally, the optimal
solution is to locate the database locally
on the same server as the FPGAs but we
had to overcome the constraint of using
the FPGA accelerators remotely. Figure
4.2 illustrates our solution to use TCP
stream sockets (2 sets) to provide
communications directly between the
database and FPGA. One set of sockets
opens a path between the database server
and Cray head node (known as node6 of
the cluster to the outside). The second
set of sockets opens a path between
node6 and the Cray node (node1)
configured with the FPGAs. We refer
to this pathway as the Remote Server
Socket (RSS) tunneling.

orcl

Oracle 10G

Sun U ltraSparc III

C ray - Node 6
Linux

Cray - N ode 1
Linux

rssc lient.so

rss tunnel.c

search.c

FPG A

Figure 4.2 Remote Server Socket (RSS)
Tunneling Architecture

With this architecture, we were
successful at sending 100,000 rows of
data through both socket layers to the
FPGA and returning results back to the
client session.

Concerned with the performance we
were seeing (results are published in
Results, section 5), we chose to simplify
the architecture by relocating the
database on the head node server
(node6) in the Linux cluster. This would
still allow for remote client connections
from web interfaces but reduces the
concern for I/O and network overhead
encountered in the sockets tunnel.

Figure 4.3 shows the optimized
architecture can still access the FPGAs
remotely yet simplifies the database
connectivity. Database requests now
stream through only one socket layer.

 7

orcl

Oracle 10G

Cray - Node 6
Linux

Cray - Node 1
Linux

rssclient.so

search.c

FPGA

Figure 4.3 Optimized Remote Access
Architecture

Pre-execution Configuration and
Initialization

It is important to note that before any
client can request an FPGA search, two
steps must be completed or have been
started in the background on the node1
server:

1) The server sockets program must be

running to open port 10241 listening
for client requests. The server
sockets programming code is
included in the Search API program,
search.c, and can run as a Unix
background process.

2) The FPGA chip must be loaded with
the customized program containing
the programmable logic. In our
project, the substring search logic is
compiled in the program called
subsearch50.bin and loaded using the
fcu utility program.

Oracle Programs

To start the request for a FPGA search,
the client attaches to an Oracle session
with rights to execute a PL/SQL
package, MDT.FPGA_SEARCH. The
following sample code shows how to
retrieve results from a FPGA search
using SQL*Plus interface:

declare

v_return_value varchar2(127);
begin
for a in (select rownum, title_no from
mdt.pdb_title)
loop
v_return_value =
MDT.FPGA_SEARCH.SEND_KEY(key_stri
ng’||'~'||a.rowid||'.'||a.title_no);
end loop;

The delimiter “~” separating the key and
row data is required by the FPGA Search
API. (For generality and ease of
implementation, we sent both the key
and data for each row during our simple
implementation but this could be
optimized later.) The results are
received into the variable v_return_value
and are to be used in the client’s
application for displaying.

Oracle supports the execution of external
programs (outside the database) from
within its PL/SQL packages. In our
application, we send one row of data as a
string parameter to an external “C”
program. Figure 4.4 shows the Oracle
step starting with an initiation of a new
RPC process. Next, the new session
spawns an extproc agent configured
through SQL*Net. The remote process
can execute a “C” program in a shared
library.

To build our search package in Oracle,
the following database objects are
created:

 8

1. Create a LIBRARY object giving the

full path to the shared library:

 CREATE LIBRARY rssclient_c as

'../../scripts/bin/rssclient.so';

2. Create the FPGA_SEARCH

package, containing a function with
the following required syntax:

CREATE OR REPLACE PACKAGE

BODY FPGA_SEARCH
 AS
 FUNCTION

SEND_KEY(SEARCH_KEY
IN VARCHAR2)

 RETURN VARCHAR2
 IS
 EXTERNAL
 LIBRARY rssclient_c
 NAME "fpga_search"
 LANGUAGE C
 PARAMETERS(SEARCH_KEY

string,
 RETURN STRING);
 end FPGA_SEARCH

Notice that the
FPGA_SEARCH.SEND_KEY function
has parameters for both sending and
receiving strings of data as it executes a
“C” function called fpga_search() in the
shared library, rssclient.so. The
fpga_search() program starts a client
socket session, sends the data passed
from the database, and waits to hear a
reply from the FPGA about whether this
string contains a match. As a reply is
received, it is returned to the Oracle
session initiating the request. That
request reply is passed back to the
Oracle function as a return value. In our
previous search example, the variable
v_return_value, holds the results from
the completed FPGA search.

Oracle
10g

FPGA

PL/SQL
wrapper forks RPC

SQL listener
spawns extproc

agent

Shared Library

S
oc

ke
ts

Search API

S
oc

ke
ts

Figure 4.4 – FPGA Search Request
Architecture

Socket Communication

TCP stream socket connections are used
to open an application connection
between the database server (node6) and
FPGA server (node1). Port 10241 must
be opened on node1 and listening for
client requests from node6. The logic of
the sockets programming is built into
two programs, client and server. The
rssclient.so shared library file contains
client logic that receives a row of data
from the database session into a
temporary buffer, opens a socket on any
port of node6, and “sends” the buffer
over to the server socket listening on
node1. The client’s socket remains open

 9

waiting for a “receive” call back from
node1 with results of the FPGA search.
Once the “receive” call returns, the
results are sent to the database client’s
session buffers and the client’s socket is
closed.

Search API Program

The Search API program is written in
“C” and handles three tasks. The first
task opens a connection to the FPGA,
and the second opens and maintains the
socket server connection to port 10241
on node1. The server runs a “while loop”
logic listening for client socket requests.
Neither the FPGA or sockets server
closes unless the client sends a string
value of “SHUTDOWN.” This
shutdown logic has been helpful to
ensure that all buffers are completely
flushed in our benchmark testing.

The third task is to handle incoming
client requests by parsing the received
string data into key and search strings,
passing them into the FPGA registers,
and initiating the search. The API
program then issues a “READ” request
to the FPGA to determine if a match has
been made. If the match is successful,
the row data is “sent” back to the client.
If the match is unsuccessful, a NULL
value to “sent” back to the client. The
client’s socket is closed and the sockets
server continues to listen for the next
request.

5. Results

Our findings had unexpected but
promising results. While programming
for the FPGA was not trivial, we are able
to show the feasibility of seamless
integration with the database technology
even between distinct hosts. To evaluate

FPGA integration potential, we tested
the FPGA substring search algorithm
against a similar database search
performed on the Oracle database. A
common table was used in both searches
containing 100,000 rows of alpha-
numeric, unindexed data.

Four different test scenarios were used:

Test 1 Invoke a local SQL*Plus
session running on the
database server through
single socket agent. (one
hop)

Test 2 Invoke a remote
SQL*Plus session running
on the Internet connection
through single socket
agent. (one hop)

Test 3 Invoke a local SQL*Plus
session running on the
database server through
double socket agents. (two
hops)

Test 4 Invoke a remote
SQL*Plus session running
on the Internet connection
through single socket
agents. (two hops)

Test results show that the Integrated
FPGA search performed slower than the
database search, as seen in Figure 5.1.
In test 2, the FPGA search was only
three milliseconds longer than the
database search but all other benchmarks
show considerably longer results.

 10

Unique Search - 100K rows

0:00:01

0:00:09

0:01:26

0:14:24

2:24:00

24:00:00

Time in MM:SS.MS

FPGA DB
Search

0:00:25 0:00:04 0:01:00 01:01.0

Database
Search

0:00:01 0:00:01 0:00:04 0:00:02

1 2 3 4
Test

Figure 5.1 - Unique row searching, Integrated
FPGA vs. Database

Our second set of testing on a full
100,000 row search for duplicate values
continued to show the same trend with
database searches returning results faster
than the Integrated FPGA as shown in
Figure 5.2. Included in Figure 5.2’s
graph are the benchmark results from a
FPGA search test run directly on the
FPGA server with no network overhead.

Full Search - 100K Rows

00:00.1

00:00.9

00:08.6

01:26.4

14:24.0

24:00.0

00:00.0

Time in MM:SS.MS

FPGA DB
Search

00:37.7 00:39.0 0:03:36 0:10:09

Database
Search

00:00.2 00:00.1 00:00.7 00:00.7

FPGA w/o
Database

00:00.3 00:00.3 00:00.3 00:00.3

1 2 3 4Test

Figure 5.2 – Full table searching, Integrated
FPGA, Database, and FPGA

Closer examination helps explain FPGA
integrated search performance delays. In
our application, we send data one row at
a time to the FPGA over the network and
back. Our proof-of-concept application
depended heavily on continuous data
movement across the sockets network
through the Linux OS into the FPGA as
shown by our timing results. In contrast,
the database search takes advantage of
the local server memory structures and
the 8K block fetches for its performance.
Not surprisingly, a configuration with
the FPGA local to the database server is
expected to be optimal.

Using a timing program provided by
Cray for the FPGA, we tested a brute-

 11

force search directly (with no network
interface) against an API written in “C.”
After the new data flag is set, the shift
register is going to start shifting left and
comparing on each positive side of the
user clock of 199 MHz. For each
substring search, the FPGA benchmark
is .12 microseconds:

 ((1/199) x 106 * 24) = 5ns * 24 = 0.12uS

Performing a search through 500,000
randomly generated values, the FPGA
took 1.7 seconds to finish. Using the raw
FPGA and Test 1 benchmarks, findings
confirm that the overhead of moving the
data in and out of the FPGA accounts for
37.4 seconds of the total 37.7 seconds..
Figure 5.2 shows the FPGA spends only
.3 microseconds to search through
100,000 data values. With further
reduction in I/O overhead, the FPGA
now becomes a viable solution nearly
matching the same performance as the
database search. Database applications
using a family of algorithms that used
FPGA pipelining and internal data
movement would showcase it as superior
for an application accelerator.

6. Challenges and Limitations

Since the application of FPGAs in high
performance computing platforms is still
quite new, there are many unanswered
questions.

The first challenge is to define which
algorithms can readily exploit FPGA
fine-grained parallelism for searching. A
closely related challenge is algorithm
partitioning and determining which
proportion of a given algorithm should
be implemented into the FPGA as
hardware.

The second challenge is the level of
expertise needed to work with hardware
descriptive languages such as VHDL or
Verilog. Even though tools are currently
being developed to take an algorithm
written and tested in “C” and then
convert it to VHDL, knowing VHDL
will still be required.

A third challenge to more readily exploit
FPGAs in database searching is the
absence of standard interfaces with the
IP core. We found a lack of common
APIs to transfer data into and out of the
FPGA. Standards will be needed to
make it easier to integrate applications at
a higher level of abstraction than
software can provide.

A fourth challenge focuses specifically
on FPGA code development. As the
logic design grows inside the FPGA and
newer FPGAs become increasingly
dense, the Place And Route (PAR) times
are increasing exponentially. (The PAR
time is the time it takes the development
platform to map the logic functions from
the VHDL onto the target FPGA.) The
PAR times are rising with the increased
number of gates and corresponding
algorithm complexity. At the same time
the amount of memory required on the
development platform has also
increased. While virtual memory is a
possible option to address the increased
memory demands, using a swap file on
the hard drive would even further
increase the PAR time beyond the level
of acceptability.

7. Conclusions

Our experience with this project proved
that the concept of noninvasive
interfacing an FPGA to an enterprise
database system is entirely possible. We

 12

have demonstrated a seamless
integration strategy with a popular
database environment (Oracle 10G on
Solaris) and a programmable FPGA
server (Cray XD1). While using
resource management frameworks such
as the Sun Grid Engine, we wanted to
demonstrate the feasibility of hardware
resource sharing without first deploying
more complicated grid and resource
management infrastructures. In both
deployment architectures, we were
successful at application integration with
a remote FPGA. This further
demonstrates the ease in which an FPGA
server can be integrated into a
production database environment, with
minimal disruption, for query research,
development and optimization.

Programming FPGAs is not trivial, but
that challenge is now less of a burden
due to increased capabilities of FPGAs.
FPGAs are now more attractive to re-
configurable computing applications for
which they would not have been
considered in the past. Due to the higher
logic densities and new developer tools,
the field of reconfigurable computing
opens new doors in areas such as

bioinformatics, digital signal processing
(DSP), video image processing, packet
processing and data encryption -- just to
name a few.

Acknowledgements

The compressed timeframe and success
of this project would not have been
possible without significant external
support. The authors would like to
acknowledge the assistance and
cooperation of Cray Inc. and in
particular Steve Margerm for providing
critical information and support when
developing the FPGA search application.
We would also like to thank Sherie
Vallo who represents Xilinx Inc. with
Avnet Electronics Inc for her help in
providing the ISE development tool.
We would also like to thank Don
Swartout of Franklin University for
providing sample chemistry data. We
would also like to acknowledge Sherry
Sun, Jim Gregory and Pete Carswell of
OSC for technical support
accommodations made to the OSC
Springfield environment which enabled
the completion of this project.

 13

References

Compton, K. & Hauck, S. (2002). Reconfigurable computing: A survey of systems and

software. Retrieved Nov 12, 2004, from the World Wide Web:
http://www.ee.washington.edu/people/faculty/hauck/publications/ConfigCom
pute.pdf

Fechner, U., Franke, L., Renner, S., Schneider, P. & Schneider, G. (2003).Comparison of

Correlation Vector Methodes for Ligand-Based Similarity Searching. Journal
of Computer-Aided Molecular Design, 17, 687-698.

Harrison, A., South, D., Willett, P. & Artymiuk, P. (2003) Representation, Searching and

Discovery of Patterns of Bases in Complex RNA Structures. Journal of
Computer-Aided Molecular Design, 17, 537-549.

Hunter, J. (2004). Calling os commands from pl/sql using external procedure. Retrieved

December 27, 2004 from World Wide Web:
http://www.idevelopment.info/data/Oracle/DBA_tips/PL_SQL/PLSQL_1.sht
ml

Jean, J., Dong, G., Zhang, H., Guo, X. & Zhang, B. (nd). Query Processing with An

FPGA Coprocessor Board. Retrieved Nov 05, 2004, from the World Wide
Web:
http://www.cs.wright.edu/people/faculty/gdong/RelQoptimizeFPGA.pdf

Kramer, A., Horn, H., & Rice, J. (2003). Fast 3D molecular superposition and similarity

search in databases of flexible molecules., Journal of Computer-Aided
Design, 17, 13-38.

Kuramochi, M & Karypis, G. (2002). An Efficient Algorithm for Discovering Frequent

Subgraphs. Retrieved Jan 22, 2004, from the World Wide Web:
http://www.cs.umn.edu/~kuram/papers/fsg-long.pdf

Pellerin, D. & Taylor, D. (1997). VHDL Made Easy, Upper Sadle River: Prentice Hall.

Skahill, K. (1996). VHDL for Programmable Logic, New York: Addison-Wesley.

Urman, S., Hardman, R. & McLaughin, M., (2004) PL/SQL Programming, Oracle Press

New York: McGraw-Hill

http://www.ee.washington.edu/people/faculty/hauck/publications/ConfigCom
http://www.idevelopment.info/data/Oracle/DBA_tips/PL_SQL/PLSQL_1.sht
http://www.cs.wright.edu/people/faculty/gdong/RelQoptimizeFPGA.pdf
http://www.cs.umn.edu/~kuram/papers/fsg-long.pdf

