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Abstract 
Database management systems have evolved as efficient mechanisms to manage large 
and diverse amounts of data. Rapid searching and analysis of database information is a 
normal requirement of most database management systems. This can be a particularly 
challenging aspect to maintain with semi-structured or unstructured data. The advent of 
more readily programmable Field Programmable Gate Array (FPGA) systems offers a 
significant opportunity to address the challenge of rapid searching for semi-structured or 
unstructured data within the context of a database management system. Combining the 
robust Sun operating environment for databases with the custom programmability of the 
FPGA provides a particularly suitable solution environment. By researching the problem 
of searching relational databases in general, and life-science databases in particular, this 
presentation will cover the steps taken and recommendations made for generally 
integrating FPGA technology for use with database management systems. 
 
 
1. Introduction 
 
Efficient database searching remains a 
key priority for businesses today. The 
increased effort to bring increasing 
amounts of unstructured data under 
management adds a unique challenge to 
maintaining high-speed searching. The 
traditional approach remains to create, 
manage, and update large numbers of 
indexes to achieve fast searching. 
Unfortunately, this requires that the 
indexes become very large while pre-
computing and storing predicted search 
elements for unstructured data.  
 
Field Programmable Gate Arrays 
(FPGAs) have demonstrated promise of 
potential increased speed for searching 
unstructured bioinformatics data for a 

number of years with such products as 
the DeCypher system from TimeLogic 
Inc. Recent availability of sufficiently 
capable and programmable FPGA 
hardware in enterprise-class systems has 
opened the door for closer integration of 
FPGA technology in enterprise 
operations.  
 
This project’s objective was to explore 
the feasibility of using specialized 
external FPGA hardware to rapidly 
search through largely unstructured data 
stored in an enterprise database 
management system.  This paper 
explores integration between database 
and hardware technologies to deliver 
acceptable performance for complex 
data searching.  By utilizing the FPGA 
technology for search algorithms, we 
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take advantage of the low level 
hardware’s inherent parallelism to 
increase the speedup of the search 
process. Searches were initiated from a 
Solaris system running a high 
performance Oracle database utilizing a 
FPGA accelerator with high bandwidth 
and low latency interconnects.  The 
hardware was custom programmed for 
the desired search criteria. 
 
2. Motivation 
 
Increasing amounts of bioinformatics 
and chemistry data are being collected in 
databases as a result of more pervasive 
laboratory automation. Frequently, the 
information collected is unstructured and 
unindexed due to the variability of the 
experiments, equipment, and diversity of 
research exploration. Providing an 
additional challenge is the limited 
support for unstructured text searching 
with standard SQL. Rather than attempt 
to impose a common data structure and 
large amounts of indexing on the 
collected information, we decided to 
pursue a project to exploit FPGA 
technology and search the information in 
a raw and largely unstructured form. 
 
OSC has utilized FPGA hardware in its 
operational environment since 2001, 
utilizing the TimeLogic DeCypher 
system for high-speed bioinformatics 
sequence searching. Specific canned 
algorithms were provided by the vendor 
for common algorithms of BLAST, 
Smith-Waterman, and Hidden-Markov 
Model searching. The FPGA accelerated 
algorithms regularly demonstrated 
search speedups on the order of 40 to 
100 times relative to non-FPGA 
implementations. Unfortunately, the 
closed environment of the TimeLogic 
system precluded extending the 

technology for more generalized 
searching.  
 
Rather than make the simplifying 
assumption that the database system and 
FPGA would co-exist on the same 
system, we decided to define the project 
scope to depict an existing production 
enterprise database environment. In this 
case, we chose the common scenario of 
an Oracle 10G database running on a 
Solaris server. We further decided to 
focus efforts early on the common need 
for rule-based and “fuzzy” string 
searching in a largely unstructured 
domain of character data -- in this case 
chemical and bioinformatics data.  
By focusing on string searching as the 
prototype implementation, the 
technology and capabilities 
demonstrated in the project have direct 
application in many other general 
database searching situations.  
 
Having completed the proof-of-concept 
project, a noninvasive development 
environment is created for defining and 
testing more complex search algorithms, 
specifically for bioinformatics data, two-
dimensional chemical structure data, and 
three-dimensional spatial searching 
where the parallelism available in the 
FPGA can be more completely 
exploited. 
 
Advantages of FPGA Searching 
 
The advantage of reconfigurable 
computing opens the possibility of using 
hardware to implement or enhance a 
specific algorithm through hardware 
acceleration.  As the gate densities 
increase in the newer FPGA devices, and 
as better development tools emerge for 
using them, more opportunities are now 
available for implementing this type of 
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reconfigurable hardware into an FPGA- 
based computing platform.  
 
A FPGA is a microchip that contains an 
array of configurable logic blocks that 
act as programmable elements and a 
programmable switch matrix.  These 
blocks are routed internally through the 
column-based channels (switch 
matrixes) that can interact with other 
programmable blocks, or it can be routed 
to an external I/O pin. Current FPGAs 
can contain well over one million logic 
elements along with SRAM including 
microprocessor cores.  These FPGAs can 
easily be programmed by sending a bit 
pattern stream to the standard JTAG 
port. After programming is complete, the 
device is ready to be used. 
 
The benefits of FPGAs in 
supercomputing are realized when 
intensive computations are being done in 
parallel inside the hardware.  This will 
free other processors to do other work 
tasks.   FPGAs perform tasks much more 
efficiently than a software program 
doing the same calculation by going 
through a series of steps. To contrast 
this, a serial program or thread has to 
fetch each instruction and then execute 
it.  These fetch and execute instructions 
eat CPU cycles.  As a large volume of 
data manipulation is involved, a high 
number of CPU cycles will be eaten by a 
software solution.  However, with FPGA 
hardware, there is no fetch and execute 
cycle.  The data is streamed in and 
usually some sort of combination logic is 
used to look for patterns or high-speed 
logic blocks such as adders, matrix 
multiply, or shifting operations are used. 
The comparison is performed on the data 
at the FPGA’s clock speed of 150 to 200 
Mhz, providing the potential for a very 
large speedup over that of the pure 

software solution. With the trend of 
larger gate counts and faster clock rates, 
the potential of FPGA accelerated 
database searching becomes increasingly 
significant. 
 
3. Equipment and Environment 
 
This project was completed using 
systems at the Ohio Supercomputer 
Center Springfield (OSC-S) site, which 
focuses on data-intensive computing 
infrastructure and applications research. 
 
Networking Interconnect Environment 
 
OSC Springfield is connected to the 
primary OSC site through Ohio’s Third 
Frontier Network (TFN). TFN, a 
statewide fiber-optic network managed 
by OSC, connects major metropolitan 
areas in Ohio with high network 
bandwidth. Internal connectivity 
between the database server and external 
FPGA host system consists of gigabit 
ethernet connectivity. 
 
Database Server Environment 
 
A Sun V1280 operating Solaris 9 was 
used as a representative mid-size 
enterprise database server. Oracle 10G 
(10.1.0.2) was chosen as the database 
management system for this project.  
Oracle is widely used for scientific data 
storage and offers seamless application 
integration with “C” and Java, as 
required to communicate between the 
FPGA and the end-user client sessions.  
The FPGA API required “C” for 
programming interfaces between the 
database and FPGA. We were able to 
leverage Oracle’s PL/SQL feature to 
execute external “C ” procedures 
launched from a client’s JDBC session, 
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passing the query criteria and data to the 
FPGA for processing. 
 
FPGA Environment  
 
The FPGA hardware environment used 
for this project was hosted on the Cray 
XD1 high performance computer 
system. The current system 
configuration breaks down as: 
 
 Twelve 64-bit AMD Opteron 

processors configured as six two-
way symmetric processors (SMPs) 
with a clock frequency of 2.2 Ghz. 
running on Linux   

 Twelve Rapid Array Processors for 
handling the communications within 
the chassis switch fabric 

 Six Xilinx Virtex-2 FPGA of part 
type XC2VP50 with a clock 
frequency of 199 MHz acting as 
application acceleration processors 

 
The FPGA is accessed by the Opteron 
processor through the HyperTransport 
bus interface, which is running at 800 
MHz with 16-bit transfers being done on 
every clock.  The FPGA is a 128 Mbyte 
window mapped into the virtual address 
space of the Opteron processor.  A set of 
API functions written in “C” are used to 
interface to the FPGA.  HyperTransport 
requests are issued to the Rapid Array 
Processor (RAP) when the Opteron does 
a read or write access to the FPGA 
address space.  These Read/Write 
requests are forwarded by the RAP to 
the FPGA through a RapidArray 
Transport (RAT) interface.  This 
interface is provided by Cray as a VHDL 
core and as part of the internal FPGA 
interface logic in the RT core. The RT 
core is essentially a state machine that 
has a transfer start, data valid, read/write 
strobes and address decode along with 

RapidArray fabric request 
acknowledgements. The speed of the 
RAT matches that of the HyperTransport 
bus, but has a simpler protocol to reduce 
the logic inside the FPGA. 

    

 
 
Figure 3.1 FPGA Internal Architecture 
 
All of the FPGA code and the substring 
search code were written in VHDL using 
the Xilinx ISE software version 6.3 on a 
Windows XP platform.  VHDL is a type 
of hardware descriptive language and 
was chosen as our programming tool due 
to Cray’s previous application 
accelerator development with the Xilinx 
ISE tools. 
 
4. Technical Approach 
 
Programmable FPGAs can be easily 
integrated into an enterprise 
infrastructure to validate the impact on 
database searching.  Relational database 
management systems such as Oracle, 
DB2, MYSQL and SQLServer, offer 
high performance techniques to store 
and retrieve data.  Integration with 
Oracle utilized PL/SQL packages and 
“C” shared libraries to retrieve data and 
send information through network 
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connections to a remote host with an 
FPGA for searching. A simple substring 
search was chosen as the remote FPGA 
search program to provide comparability 
to functionality present with standard 
SQL. 
 
The Substring Search 
 
Our initial research showed that a simple 
brute force strategy would be just as 
effective as a more complicated search 
algorithm.  This project’s application 
made use of 11 quadword size (64 bits) 
user registers accessible to the Opteron 
processor.  Three registers were used 
together to make a word width of 24 
bytes in length.  Three were used for the 
search key, three for the search data, and 
three for a key mask.  The other two 
registers were used for control and to 
read the search results.   
We set our word lengths at 24 bytes.  
This was accomplished by using three 
sets of three 64-bit user registers as 
shown in Figure 4.1. These register sets 
supported the following: 

 Input data string to be searched 
 The search key 
 A mask to handle variable length 

search strings 
 
When new data is written to the FPGA 
registers, a bit called “new data” is set.  
This bit causes the key, data, and mask 
to be loaded into the substring search 
registers on the final data write.  When 
new data is cleared, the synchronous 
search is started and the data shifting is 
clocked at the FPGA user clock 
frequency.   

 
Figure 4.1 – FPGA Application - Search 
Matching Logic 
 
The steps involved at the hardware level 
for exact string matching are as follows: 
 
1. Shift each byte in the data register to 

the left, and then feed the top byte 
back to the beginning. 

2. Compare the data register against the 
mask register (all bits on), with an 
“AND” operation to mask off bytes 
that are outside of the key length. 

3. Store the result of the “AND” 
operation into a temp data register. 

4. Check to see if the key is the same as 
the shifted/masked-off data by doing 
a comparison.  If they are equal, set 
the LSB position in the result 
register. 

 
Database and Application Integration 
 
The first challenge was to determine 
how the client would reach an 
application that could send data to the 
FPGA for processing and return the 
results back to that session.  We want the 
client to reach this application through a 
“thin-layer” browser session using JDBC 
connectivity to the Oracle database.  
Once the request is sent to the Oracle 
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database, PL/SQL packages are executed 
to retrieve data and send rows out 
externally by calling a “C” shared library 
file to pass data to the FPGA.  This 
client session remains persistent waiting 
for results of matching rows to be 
returned to the FPGA.  
 
The second challenge was to determine 
how to communicate seamlessly 
between the database and FPGA 
although they were not running on the 
same server. The FPGAs were installed 
on a server inside a Linux cluster that 
was not directly reachable from the 
database server.   Ideally, the optimal 
solution is to locate the database locally 
on the same server as the FPGAs but we 
had to overcome the constraint of using 
the FPGA accelerators remotely.  Figure 
4.2 illustrates our solution to use TCP 
stream sockets (2 sets) to provide 
communications directly between the 
database and FPGA.  One set of sockets 
opens a path between the database server 
and Cray head node (known as node6 of 
the cluster to the outside). The second 
set of sockets opens a path between 
node6 and the Cray node (node1) 
configured with the FPGAs.   We refer 
to this pathway as the Remote Server 
Socket (RSS) tunneling.  
 

orcl

Oracle 10G

Sun U ltraSparc III

C ray - Node 6
Linux

Cray - N ode 1
Linux

rssc lient.so

rss tunnel.c

search.c

FPG A

 
Figure 4.2   Remote Server Socket (RSS) 
Tunneling Architecture 

 
 
With this architecture, we were 
successful at sending 100,000 rows of 
data through both socket layers to the 
FPGA and returning results back to the 
client session.  
 
Concerned with the performance we 
were seeing (results are published in 
Results, section 5), we chose to simplify 
the architecture by relocating the 
database on the head node server 
(node6) in the Linux cluster.  This would 
still allow for remote client connections 
from web interfaces but reduces the 
concern for I/O and network overhead 
encountered in the sockets tunnel.   
 
Figure 4.3 shows the optimized 
architecture can still access the FPGAs 
remotely yet simplifies the database 
connectivity.  Database requests now 
stream through only one socket layer.   
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Figure 4.3 Optimized Remote Access 
Architecture 
 
 
Pre-execution Configuration and 
Initialization 
 
It is important to note that before any 
client can request an FPGA search, two 
steps must be completed or have been 
started in the background on the node1 
server:   
 
1) The server sockets program must be 

running to open port 10241 listening 
for client requests.  The server 
sockets programming code is 
included in the Search API program, 
search.c, and can run as a Unix 
background process. 

2) The FPGA chip must be loaded with 
the customized program containing 
the programmable logic.  In our 
project, the substring search logic is 
compiled in the program called 
subsearch50.bin and loaded using the 
fcu utility program. 

Oracle Programs 
 
To start the request for a FPGA search, 
the client attaches to an Oracle session 
with rights to execute a PL/SQL 
package, MDT.FPGA_SEARCH.   The 
following sample code shows how to 
retrieve results from a FPGA search 
using SQL*Plus interface: 
 
declare 

v_return_value varchar2(127);  
begin 
for  a in  (select rownum, title_no from 
mdt.pdb_title) 
loop 
v_return_value = 
MDT.FPGA_SEARCH.SEND_KEY(key_stri
ng’||'~'||a.rowid||'.'||a.title_no); 
end loop; 
 
The delimiter “~” separating the key and 
row data is required by the FPGA Search 
API.  (For generality and ease of 
implementation, we sent both the key 
and data for each row during our simple 
implementation but this could be 
optimized later.)  The results are 
received into the variable v_return_value 
and are to be used in the client’s 
application for displaying. 
  
Oracle supports the execution of external 
programs (outside the database) from 
within its PL/SQL packages.  In our 
application, we send one row of data as a 
string parameter to an external “C” 
program.  Figure 4.4 shows the Oracle 
step starting with an initiation of a new 
RPC process.  Next, the new session 
spawns an extproc agent configured 
through SQL*Net.  The remote process 
can execute a “C” program in a shared 
library.   
 
To build our search package in Oracle, 
the following database objects are 
created: 
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1. Create a LIBRARY object giving the 

full path to the shared library:  
 
                  CREATE LIBRARY rssclient_c as 

'../../scripts/bin/rssclient.so'; 
 
2. Create the FPGA_SEARCH 

package, containing a function with 
the following required syntax: 

 
CREATE OR REPLACE PACKAGE 

BODY FPGA_SEARCH 
    AS 
    FUNCTION 

SEND_KEY(SEARCH_KEY 
IN VARCHAR2)  

             RETURN VARCHAR2 
    IS 
    EXTERNAL 
    LIBRARY rssclient_c 
    NAME "fpga_search" 
    LANGUAGE C 
    PARAMETERS(SEARCH_KEY 

string,  
               RETURN STRING); 
   end FPGA_SEARCH 

 
 
Notice that the 
FPGA_SEARCH.SEND_KEY function 
has parameters for both sending and 
receiving strings of data as it executes a 
“C” function called fpga_search() in the 
shared library, rssclient.so. The 
fpga_search() program starts a client 
socket session, sends the data passed 
from the database, and waits to hear a 
reply from the FPGA about whether this 
string contains a match.  As a reply is 
received, it is returned to the Oracle 
session initiating the request. That 
request reply is passed back to the 
Oracle function as a return value.  In our 
previous search example, the variable 
v_return_value, holds the results from 
the completed FPGA search.    
 

Oracle
10g

FPGA

PL/SQL
wrapper forks RPC

SQL listener
spawns extproc

agent

Shared Library

S
oc

ke
ts

Search API

S
oc

ke
ts

 
 

Figure 4.4 – FPGA Search Request 
Architecture 
 
Socket Communication 
 
TCP stream socket connections are used 
to open an application connection 
between the database server (node6) and 
FPGA server (node1).  Port 10241 must 
be opened on node1 and listening for 
client requests from node6.  The logic of 
the sockets programming is built into 
two programs, client and server.  The 
rssclient.so shared library file contains 
client logic that receives a row of data 
from the database session into a 
temporary buffer, opens a socket on any 
port of node6, and “sends” the buffer 
over to the server socket listening on 
node1.  The client’s socket remains open 
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waiting for a “receive” call back from 
node1 with results of the FPGA search.  
Once the “receive” call returns, the 
results are sent to the database client’s 
session buffers and the client’s socket is 
closed.   
 
Search API Program 
 
The Search API program is written in 
“C” and handles three tasks.  The first 
task opens a connection to the FPGA, 
and the second opens and maintains the 
socket server connection to port 10241 
on node1. The server runs a “while loop” 
logic listening for client socket requests. 
Neither the FPGA or sockets server 
closes unless the client sends a string 
value of “SHUTDOWN.”  This 
shutdown logic has been helpful to 
ensure that all buffers are completely 
flushed in our benchmark testing. 
     
The third task is to handle incoming 
client requests by parsing the received 
string data into key and search strings, 
passing them into the FPGA registers, 
and initiating the search.  The API 
program then issues a “READ” request 
to the FPGA to determine if a match has 
been made.  If the match is successful, 
the row data is “sent” back to the client.  
If the match is unsuccessful, a NULL 
value to “sent” back to the client.  The 
client’s socket is closed and the sockets 
server continues to listen for the next 
request.  
 
5. Results 
 
Our findings had unexpected but 
promising results.  While programming 
for the FPGA was not trivial, we are able 
to show the feasibility of seamless 
integration with the database technology 
even between distinct hosts.  To evaluate 

FPGA integration potential, we tested 
the FPGA substring search algorithm 
against a similar database search 
performed on the Oracle database.  A 
common table was used in both searches 
containing 100,000 rows of alpha-
numeric, unindexed data.    
 
Four different test scenarios were used:
  

Test 1 Invoke a local SQL*Plus 
session running on the 
database server through 
single socket agent. (one 
hop) 

Test 2 Invoke a remote 
SQL*Plus session running 
on the Internet connection 
through single socket 
agent. (one hop) 

Test 3 Invoke a local SQL*Plus 
session running on the 
database server through 
double socket agents. (two 
hops) 

Test 4 Invoke a remote 
SQL*Plus session running 
on the Internet connection 
through single socket 
agents. (two hops) 

 
 
Test results show that the Integrated 
FPGA search performed slower than the 
database search, as seen in Figure 5.1.   
In test 2, the FPGA search was only 
three milliseconds longer than the 
database search but all other benchmarks 
show considerably longer results.  
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Unique Search - 100K rows

0:00:01

0:00:09

0:01:26

0:14:24

2:24:00

24:00:00

Time in MM:SS.MS

FPGA DB
Search

0:00:25 0:00:04 0:01:00 01:01.0

Database
Search

0:00:01 0:00:01 0:00:04 0:00:02

1 2 3 4
Test

Figure 5.1 - Unique row searching, Integrated 
FPGA vs. Database   
 
Our second set of testing on a full 
100,000 row search for duplicate values 
continued to show the same trend with 
database searches returning results faster 
than the Integrated FPGA as shown in 
Figure 5.2.  Included in Figure 5.2’s 
graph are the benchmark results from a 
FPGA search test run directly on the 
FPGA server with no network overhead.   

Full Search - 100K Rows

00:00.1

00:00.9

00:08.6

01:26.4

14:24.0

24:00.0

00:00.0

Time in MM:SS.MS

FPGA DB
Search

00:37.7 00:39.0 0:03:36 0:10:09

Database
Search

00:00.2 00:00.1 00:00.7 00:00.7

FPGA w/o
Database

00:00.3 00:00.3 00:00.3 00:00.3

1 2 3 4Test

 
Figure 5.2 – Full table searching, Integrated 
FPGA, Database, and FPGA  
 
 
Closer examination helps explain FPGA 
integrated search performance delays.  In 
our application, we send data one row at 
a time to the FPGA over the network and 
back.  Our proof-of-concept application 
depended heavily on continuous data 
movement across the sockets network 
through the Linux OS into the FPGA as 
shown by our timing results.  In contrast, 
the database search takes advantage of 
the local server memory structures and 
the 8K block fetches for its performance. 
Not surprisingly, a configuration with 
the FPGA local to the database server is 
expected to be optimal.  
 
Using a timing program provided by 
Cray for the FPGA, we tested a brute-
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force search directly (with no network 
interface) against an API written in “C.”  
After the new data flag is set, the shift 
register is going to start shifting left and 
comparing on each positive side of the 
user clock of 199 MHz.  For each 
substring search, the FPGA benchmark 
is .12 microseconds:  

 
 ((1/199 ) x 106 * 24)  =  5ns * 24 =  0.12uS   
 
Performing a search through 500,000 
randomly generated values, the FPGA 
took 1.7 seconds to finish. Using the raw 
FPGA and Test 1 benchmarks, findings 
confirm that the overhead of moving the 
data in and out of the FPGA accounts for 
37.4 seconds of the total 37.7 seconds..  
Figure 5.2 shows the FPGA spends only 
.3 microseconds to search through 
100,000 data values.  With further 
reduction in I/O overhead, the FPGA 
now becomes a viable solution nearly 
matching the same performance as the 
database search.  Database applications 
using a family of algorithms that used 
FPGA pipelining and internal data 
movement would showcase it as superior 
for an application accelerator.   
 
6. Challenges and Limitations 
 
Since the application of FPGAs in high 
performance computing platforms is still 
quite new, there are many unanswered 
questions.  
  
The first challenge is to define which 
algorithms can readily exploit FPGA 
fine-grained parallelism for searching. A 
closely related challenge is algorithm 
partitioning and determining which 
proportion of a given algorithm should 
be implemented into the FPGA as 
hardware.  
 

The second challenge is the level of 
expertise needed to work with hardware 
descriptive languages such as VHDL or 
Verilog.  Even though tools are currently 
being developed to take an algorithm 
written and tested in “C” and then 
convert it to VHDL, knowing VHDL 
will still be required.  
 
A third challenge to more readily exploit 
FPGAs in database searching is the 
absence of standard interfaces with the 
IP core. We found a lack of common 
APIs to transfer data into and out of the 
FPGA.  Standards will be needed to 
make it easier to integrate applications at 
a higher level of abstraction than 
software can provide. 
 
A fourth challenge focuses specifically 
on FPGA code development. As the 
logic design grows inside the FPGA and 
newer FPGAs become increasingly 
dense, the Place And Route (PAR) times 
are increasing exponentially.  (The PAR 
time is the time it takes the development 
platform to map the logic functions from 
the VHDL onto the target FPGA.)  The 
PAR times are rising with the increased 
number of gates and corresponding 
algorithm complexity. At the same time 
the amount of memory required on the 
development platform has also 
increased. While virtual memory is a 
possible option to address the increased 
memory demands, using a swap file on 
the hard drive would even further 
increase the PAR time beyond the level 
of acceptability. 
 
7. Conclusions 
 
Our experience with this project proved 
that the concept of noninvasive 
interfacing an FPGA to an enterprise 
database system is entirely possible.  We 
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have demonstrated a seamless 
integration strategy with a popular 
database environment (Oracle 10G on 
Solaris) and a programmable FPGA 
server (Cray XD1).  While using 
resource management frameworks such 
as the Sun Grid Engine, we wanted to 
demonstrate the feasibility of hardware 
resource sharing without first deploying 
more complicated grid and resource 
management infrastructures. In both 
deployment architectures, we were 
successful at application integration with 
a remote FPGA. This further 
demonstrates the ease in which an FPGA 
server can be integrated into a 
production database environment, with 
minimal disruption, for query research, 
development and optimization. 
 
Programming FPGAs is not trivial, but 
that challenge is now less of a burden 
due to increased capabilities of FPGAs.  
FPGAs are now more attractive to re-
configurable computing applications for 
which they would not have been 
considered in the past.  Due to the higher 
logic densities and new developer tools, 
the field of reconfigurable computing 
opens new doors in areas such as 

bioinformatics, digital signal processing 
(DSP), video image processing, packet 
processing and data encryption -- just to 
name a few. 
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