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Abstract. Recent widespread interest in the use of configurable hardware accelerators has brought to light the 

need for a portable application programmer interface (API) to achieve widespread adoption. Recent activities 

defining a candidate common generic API for field programmable gate arrays have facilitated the definition 

of an application specific API for accelerating molecular dynamics programs. Using the LAMMPS 

application as a prototype implementation platform, both the general FPGA API and application specific 

molecular dynamics API are presented with preliminary results confirming the viability of the portability of 

both a general and functionally specific API across reconfigurable hardware and development environments.  
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1   Introduction 

Interest has risen significantly in the past two years in seeking new approaches for accelerating scientific 

applications. This is particularly evident in several efforts focused on speeding up molecular dynamics 

applications using technologies ranging from multiple core CPUs, graphical processing units, cell processors and 

field programmable gate arrays (FPGAs). This paper extends the base of research needed to fully exploit field 

programmable gate arrays in this capacity, including presentation and discussion of application programmer 

interfaces (APIs) needed to facilitate the use of FPGAs in a hybrid accelerated computing environment. 

1.1   Challenges of Force Field Based Molecular Simulations in Practice 

Molecular dynamics is a method for investigating the behavior of chemical systems at a molecular and atomic 

level. The ability of molecular dynamics to describe, explain, and differentiate among complex interactions at a 

molecular level involving systems of thousands and even millions of atoms has lead to the development of 

several approaches to molecular dynamics, including Carr-Parinello molecular dynamics (CPMD) [1], all atom 

classical force field molecular dynamics [2], and increasingly hybrid approaches involving mixed quantum and 

classical molecular dynamics [3] to name a few. This ability of molecular dynamics to describe complex 

interactions and three-dimensional shape, particularly at a protein level, and the computational challenges in 

achieving solutions for very large peta-scale systems is summarized in a recent article by Agarwal and Alam. 

Their investigations, conducted at Oak Ridge National Lab, identified existing limitations in current applications 

and programming models for highly parallel systems needed to model these extremely large systems, with 

specific discussion of new approaches needed to incorporate emerging FPGA and Graphical Processing Unit 

(GPUs) application accelerators [4]. 

 

For large molecular systems with 10,000 of particles and more, still approximate and experimentally tuned 

interaction potentials must be used to reduce the computational demands to an acceptable limit. Furthermore, for 

large in-silico screening “experiments” the time-to-answer is very important so that desirable turn-around times 

for simulations are over night runs even if this implies again further approximations in the simulation method. 

 

At its foundation, molecular dynamics involves the evaluation of forces on atoms within a molecular system, 

employing Newtonian equations of motion to compute time-dependent displacement the atoms, integrating over 

time to advance the system to future states. A commonly accepted method for integrating the molecular system 

in time is the Velocity Verlet algorithm [5], which is defined as: 

 



 

[ ])()(
2

)()(

))((
2

1
)()()( 2

ttFtF
m

t
tvttv

ttF
m

ttvtrttr

∆++
∆

+=∆+

∆+∆+=∆+

 

(1) 

 

 

(2) 

where equation (1) describes the update of the position in space r, and equation (2) the update of the velocity 

v at the next time step t+∆t with F and m being the force acting on the particle and m its mass. Usually, the time 

step ∆t is in the order of femtoseconds leading high computational demands for simulating the dynamics of 

large-scale particle systems, e.g. complexes of biomolecular compounds in solution or nano-scale probes of 

inorganic solid-state materials. Excepting the computation of the actual forces, the Velocity Verlet algorithm 

update involves a computational complexity of O(N) for the system, with N being the number of atoms. 

 

With a broad acceptance and relatively low computational cost of the Velocity Verlet algorithm, it is 

understandable that evaluation of the forces among atoms within interacting molecules is where approaches 

differentiate themselves. Limiting the scope of these methods to those already proven viable for FPGA 

acceleration, the focus of this paper is to examine the nature, feasibility and implications of standard application 

programmer interfaces by proposing a common API for classical force field molecular dynamics 

implementations on field programmable gate arrays. 

1.2   Forces and Energies from Classical Force Fields with FPGAs: Related Work 

The evaluation of accurate system energies and forces on each atom is composed of several individual 

contributions, each receiving investigative attention from the reconfigurable computing research community. 

These investigations have been critical in establishing the context for a portable molecular dynamics API for 

reconfigurable computing, highlighting both capabilities and limitations in these solutions. Limiting the scope of 

these methods to those already proven viable for FPGA acceleration, the focus of this paper is to examine the 

nature, feasibility and implications of standard application programmer interfaces by proposing a common API 

for classical for force field molecular dynamics implementations on field programmable gate arrays 

 

Short-range inter-atomic interactions: Exploiting specialized hardware accelerators for computational 

challenging problems are today’s common approach to meet the user’s requirements. In the area of molecular 

dynamics simulation the most prominent example is the evolution of the MDGRAPE system [6] with latest 

version breaking the PetaFlop/s barrier recently [7]. 

Kindratenko and Pointer [8] reported their effort in porting the molecular dynamics code NAMD to the SRC-

6 platform. On the SRC-6 system, they achieved an overall speedup of 3 compared to a 2.8 GHz x86-CPU which 

is remarkable for a highly optimized production code. 

For FPGAs, early investigations by Scrofano and Prasanna [9] showed favorable results for a tuned Lennard-

Jones potential and force computation with reconfigurable hardware. While the investigations focused on only a 

limited problem description, the results nevertheless showed the capabilities for FPGAs to accelerate 

computation of short-range interactions using reconfigurable computing hardware available at the time.  

 

Long-range Coulomb interactions: Cordova and Smith [10, 11] have done some research in improving the 

performance of large-scale molecular dynamics calculations using reconfigurable supercomputers. After 

analyzing FFT, they found that for the parallel systems, the communication costs become significant. As a result, 

they suggested implementing the FFT kernel in single or closely coupled FPGAs. This will reduce the overhead 

of communications since data does not need to be transferred to other processors. 

Hemmert and Underwood [12] have analyzed the implementation of double-precision floating-point FFT on 

FPGAs. They have explored three different implementations for the Fast Fourier Transform (FFT) on FPGAs. 

The algorithms are compared in terms of sustained performance and memory requirements for various FFT sizes 

and FPGA sizes. The results show that the low FPGA clock rate and high latency floating-point units make 

current FPGAs inferior to microprocessors for a single, small FFT. For large FFTs, FPGAs show a trend toward 

dramatically outperforming microprocessors. 

Recent investigations by Alam et al. [13] of the Particle Mesh Ewald (PME) summation successfully 

illustrated speed-up of the AMBER molecular dynamics applications using SRC FPGA computing systems. 

Using the SRC system with its integrated Carte environment, the investigations clearly demonstrated speedup for 

molecular dynamics applications when exploiting deep pipelining, concurrent execution, and data streaming to 

accentuate capabilities of FPGAs. The investigations exploited FFTs in the evaluation of the Ewald summation 

to achieve high performance and speedup on reconfigurable computing hardware. 



 

2.   Design Principles for Application APIs for Reconfigurable Computing 

Development of common APIs is not a simple task. Either a group must have market dominance whereby de 

facto APIs are developed as a result of unilateral decisions, or, one must develop an API with the input and 

support of a community in response to their evolving needs. With many molecular dynamics applications in use 

within industry and academia, and no single dominant organization, the latter scenario must be pursued to 

develop such an API. The proposed molecular dynamics API for reconfigurable computing has been developed 

within the applications library (APPLIB) working group for OpenFPGA, the result of a sponsored project to 

investigate and demonstrate the feasibility of such an API. 

 

In a recent special issue of Compute devoted to reconfigurable computing, Herbordt et. al. have proposed 

several guidelines for achieving high-performance FPGA-based computing [14]. These methods are briefly 

summarized as follows: 

 

• Use an algorithm optimal for FPGAs 

• Use a computing mode appropriate for FPGAs 

• Use appropriate FPGA structures 

• Live with Amdahl’s Law 

• Hide latency of independent functions 

• Use rate-matching to remove bottlenecks 

• Take advantage of FPGA-specific hardware 

• Use appropriate arithmetic precision 

• Use appropriate arithmetic mode 

• Minimize use of high-cost arithmetic operations 

• Create families of applications, not point solutions 

• Scale application for maximal use on FPGA hardware  

 

The design and specification of this API has taken into account this key insight for achieving high-

performance results on reconfigurable computing hardware. In addition, the proposed API incorporates 

additional design criteria into the specification to ease incorporation into a broad range of applications and 

support across multiple technologies.  These additional criteria include: 

 

• High portability across technology and application platforms 

• Resource discovery 

• Ease of adoption for software developers 

• Existence of verifiable reference implementation 

• Extensibility of the API to adapt to new innovations in the reconfigurable computing and accelerator 

computing space 

 

An overview of the key features for the API serves to illustrate the support for the design criteria required to 

achieve high-performance for FPGA devices while concurrently providing for ease of incorporation and 

retrofitting of existing applications. 

 

Selectable precision – As pointed out by Herbordt et al., the ability to select computing precision is key to 

achieving high-performance in reconfigurable computing. The importance of this element was further 

emphasized by Dongarra et al. in their SC06 presentation examining the use of single precision computation in a 

double precision environment [15]. The API developed for molecular dynamics achieves selectable precision by 

specifically separating the precision of the data representation for input and output elements from the preferred 

precision for the selected method. The selectable precision provides the programmer the ability, if desired, to 

optimize the balance between precision required of the implementation and parallelism enabled by the 

computing environment. 

 

Asynchronous operation – Highlighted as a key design criteria for achieving FPGA performance, and 

further supported by Underwood et al. in a presentation at SC06 [16], asynchronous operation is inherent to 

enable hiding latency in the underlying implementation. The developed API incorporates a method for 

asynchronous execution accessible to the application programmer in a manner familiar to implementers of MPI. 

 

Easy specification of implementation methods – Rather than define a specific API for each implementation 

method and combination, the developed API incorporates a selectable list for identifying a given method of 

interest for transforming the input to output. Implemented in a hierarchical manner, the list supports specification 



 

of defaults and delayed binding preferences such as ‘fastest available’ for a dynamic computing environment. 

This approach to delayed binding also enables high-level application portability. An early list of implementation 

methods is listed in Appendix B.  

 

Common Algorithmic Specification – Reinforcing the point for developing application families, specific 

API methods and structures are defined for the most commonly implemented and needed algorithms for 

molecular dynamics. It is expected that this set will expand as new algorithms become commonly accepted. 

 

Layering – The developed API abstraction supports layering of methods within the fabric of the API. 

Layering is an important construct, enabling early and long-term adoption as computing environments evolve. 

Support for ‘tiers’ of abstraction is required to enable early adopters to integrate the API at a low-level into their 

applications with minimal disruption while also supporting growing composite operations that become 

increasingly possible with advances in hardware. 

 

The cumulative criteria are approached in the following manner evident in the developed molecular dynamics 

API. It is important to note that the functionality behind the proposed API is not yet fully implemented and 

supported, but that it will increasingly be implemented with the cumulative contributions of the community. 

3.   Portable Application Programmer Interfaces for Reconfigurable Computing 

The proposed APIs for evaluating FFT contributions and non-bonding interactions are based on the OpenFPGA 

GenAPI definition for FPGAs. A standard GenAPI interface will increase adoption of reconfigurable computing 

technologies. Currently, all vendors of reconfigurable hardware provide customized APIs for interfacing to their 

hardware and software. All software vendors are then required to port their tools to each hardware vendors APIs 

by writing additional middleware. Should all hardware vendors support the OpenFPGA GenAPI, then 

reconfigurable platforms would automatically be supported by any compliant software vendor’s tools. 

 

Based on an earlier OpenFPGA draft document1 we have implemented the following Generalized API for using 

FPGA in molecular dynamics simulations. The summary list of functions and their purpose are listed below. 

(Details of the full specification are available in the Appendix A and at the OpenFPGA website, 

www.openfpga.org.) The features of this generic API are quickly summarized as follows: 

 

• Allocation of necessary resources and initialization of FPGA device and its infrastructure 

• Managing of FPGA algorithms (bitstream files) and its mapping to FPGA devices. 

• Allocation of aligned memory segments for optimal data transfers from host memory to FPGA attached 

memory banks and vice versa. 

• Explicit interface to (blocked) data transfer functions. 

 

Our proposed GenAPI extends the API draft of the OpenFPGA GENAPI Working Group by 

 

i) introducing the concept of an Algorithm Registry and metadata about algorithm requirements, and 

ii) support for encoding and querying the FPGA hardware configuration 

 

for higher level application specific APIs, see Figure 0 for illustration of the relationship of these components 

and the internal control flow. 

 

The basic idea for introducing an algorithm registry is to optimize the configuration time and to support 

multiple algorithms on the FPGA within one application. If supported by the vendor hardware, the registry 

interface can improve the time to reconfigure a FPGA device during runtime by pre-fetching the bitstream into a 

specific memory location with an optimal upload path to the FPGA device. Another advantage can be seen if 

applications require multiple and different algorithms to be used. 

Properties of the FPGA infrastructure such as the type of the FPGA device itself, type and size of attached 

memory banks, average configuration time, or quality of the connection link to a host system have to be 

processed by applications to make decisions for options of data mapping or multiple run-time reconfigurations. 

These properties can be queried by an application code. For the description of these FPGA infrastructure 

properties we propose a XML based schema [17]. 

 

                                                           
1 OpenFPGA GENAPI Working Group document prepared by Stefan Möhl, Mitrionics. 



 

The Generic FPGA interface abstraction is a key element to achieve easy and rapid underlying portability of 

the Molecular Dynamics OpenFPGA API. Designed to be supportable in most FPGA environments, the 

OpenFPGA GenAPI was used in the development and validation of early elements for the proposed molecular 

dynamics API. 

3.2   Function Definitions 

 For a general interface between a high level application and the low level API for specific hardware, we propose 

adding a layer of abstraction that can be coded in a way to be vendor specific for low level hardware API calls 

but very general to any application.The application can be written in Java, C, C++, C# or any language that can 

share the standard API library for FPGAs.  We propose that this library is written in C since most of the APIs 

that are currently on the market are using the C language.To differentiate the specific hardware, the API library 

would use a vendor table that is used to distinguish to what hardware the generic interface is talking to. The 

vendor ID will be assigned and tracked by OpenFPGA. 

Table 1 gives an overview of the GenAPI, a more detailed description can be found in Appendix A. 

3.3   Advantages and Limitations of the Proposed GenAPI 

The proposed GenAPI provides a vendor neutral interface for the communication of the host system to the 

FPGA device. Thus, it assumes the co-processor model as system architecture: The FPGA device usually with 

attached control logic for communication and memory moduls is connected to the host system consisting of one 

or more general purpose CPU cores and its memory subsystem. This architectural model can be mapped on most 

of the today’s general purpose computers equipped with FPGAs2. The GenAPI represents a subset of functions 

to be found in a convergent set of vendor-specific interfaces of SGI, Cray, DSPlogic and Nallatech, for example. 

From these interfaces a common and necessary minimal subset of functionality was derived. 

 

A newly introduced feature is the algorithm registry. Although a support for multiple FPGAs exists only in a 

few of the today’s systems, it is intended to provide a basic functionality for using multiple FPGAs in a compute 

node within one application. Hence, it makes sense to support the applicability of more than one algorithmic 

kernel to be used on different FPGAs per node. The algorithm registry keeps track of registered algorithms 

(FPGA bitstream files) complemented with metadata describing the algorithm3.  

 

                                                           
2 Note, that in the future the re-configurable functionality of data processing devices can be a integral part of a general 

purpose CPU device, and part of the functionality of the proposed API has to be handled by the operating system than. 
3 An XML schema for algorithmic description is developed and pending release. 
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Figure 0: Relationship of the user’s application, the FPGA device infrastructure and the algorithm 

registry to support faster reconfiguration and for multiple bitstream support. Major 

control and information flow as realized in the proposed OpenFPGA GenAPI are shown. 



 

Table 1: Preliminary General API for Reconfigurable Computing Devices 

ofpga_init 
The function opens the specified FPGA device(s) on a node and performs 

low-level system initialization 

ofpga_device_prop 
The function returns hardware configuration data of the FPGA device, 

e.g. types, numbers and sizes of attached memory modules, bitstream 

load bandwidth, and so on 

ofpga_close 
Data and FPGA device resources are cleared. 

ofpga_register_algorithm 
This function registers the bitstream files, i.e. an algorithm in a registry 

per node. If supported, this pre-loads the bitstream into a dedicated 

memory location near the FPGA chip. Multiple calls should be supported 

if we want to support deep scaling per node or reconfiguring the FPGA 

during runtime within one application. 

ofpga_load_algorithm 
The function loads the registered algorithm into the FPGA, i.e. the FPGA 

is configured 

ofpga_registered_malloc 
The function allocates memory with an optimal alignment (e.g. on 

memory page boundaries) for optimal data transfer between host memory 

and FPGA 

ofpga_run 
The function starts the algorithm asynchronously on the configured 

FPGA and returns control immediately 

ofpga_status 
The function provides status information about the running algorithm as 

much as it supported by the platform. 

ofpga_bwait 
The function call, a blocked wait, returns if the run on the FPGA is 

finished. 

ofpga_read_register 
The function transfers one word from a FPGA “register” to host memory. 

Register is an algorithm dependent interface to one word wide 

parameters. 

ofpga_write_register 
The function writes one word from host to a FPGA register destination. 

ofpga_send 
This function sends a data block to the FPGA device. 

ofpga_receive 
This function receives a data block from a FPGA device. 

 

 

 

 

 

 

To match application requirements with effectively available hardware resources (e.g. size of attached 

memory) the properties of the FPGA hardware has to be described as well and can be queried by means of a 

function [17]. 

 

Maintaining a narrow scope for definition of initial common functionality, the currently defined GenAPI has 

deferred common specification for the following features: 

- The explicit access to DMA capabilities. 

- A streaming model for data transfer. 

- The automatic partitioning of data, i.e., distributing user data across FPGA internal BRAM or to FPGA 

attached memory modules within one compute node is application specific. 

- An automatic partitioning of multiple kernels on FPGAs. The programmer has to keep track which 

kernel (bitstream file) is loaded on which FPGA device. 

- Automatic wide and deep scaling4. 

- Support for direct FPGA to FPGA communication. 

 

Consequently, a functionally specific API must be defined in anticipation of future extensions to the initial 

general API. 

 

                                                           
4 These terms are used by SGI in its RASC library definition to annotate  



 

4.   Development of a Reconfigurable Computing API Family for Molecular Dynamics 

Validation of the GenAPI presented in the prior section was accomplished in the development of a 

functionally specific API for molecular dynamics specifically for Lennard-Jones interactions and FFT 

evaluations. The following reconfigurable computing API for molecular dynamics illustrates the utility of the 

GenAPI as well as highlight key elements for effective acceleration of a molecular dynamics application. While 

preliminary, the molecular dynamics API for reconfigurable computing has been developed within the 

applications library working group (APPLIB) for OpenFPGA, driven with input from industrial users of the 

applications 

 

The current status of the API for molecular dynamics functions on reconfigurable computing devices is in its 

bootstrapping phase. Based on well-known examples in the literature [6, 8, 9, 18 - 20] and our own experiences, 

an initial representative set of functionality has been implemented: 

 

• Lennard-Jones forces and energies as a common model for short-range non-bonding interactions, and 

• 3D and 1D FFT used by the Particle-Particle Particle-Mesh (PPPM) method for long-range Coulomb 

interactions. 

 

 

The decision for this initial selected was rationalized by runtime execution profiles obtained with LAMMPS 

[21] using representative input data sets provided by a project sponsor. For typical large benchmark cases, 75 

percent of the runtime is spent in the computation of Lennard-Jones (LJ) pair wise forces and energies in a single 

CPU LAMMPS run on a Cray XD1 node (2.2 GHz Opteron, 2 GB RAM per node). Other program sections 

where substantial parts of the runtime were spent are the FFT for long-range Coulomb interactions and the 

building of the neighbor list. 

 

The cumulative criteria are approached in the following manner evident in the developed molecular dynamics 

API. It is important to note that the functionality behind the functionality behind the proposed API is not yet 

fully implemented nor supported at this time. However, the API, even in the current early state, serves as a 

template to guide further implementations incorporating reconfigurable hardware. A quick summary of the 

preliminary API is presented below, with full details of the molecular dynamics family API available in 

Appendix B. 

4.1   API for Short-Range Non-bonding (Lennard-Jones) and Long-Range Coulomb Interactions  

As outlined in section 2, the API for non-bonding interactions will support multiple precision variants of an 

LJ implementation. One of the strengths of FPGAs is that they can support implementations with varying bit 

allocations for data representation tuned to optimize data transfer, emphasize precision, or yield best 

performance. This extends to the use of non-IEEE data specifications which can yield effective results even if all 

underlying operations do not employ full IEEE floating point data representations. 

 

Examples for precision types are (subject to availability of implementation): 

 

• LJ_612_FastestAvailable: fastest available algorithm for computing the answer 

• LJ_612_BestPrecision:  best precision algorithm available for computing the answer 

• LJ_612_ALL_SingleExact: IEEE single precision exact implementation for both force and energies 

• LJ_612_ALL_DoubleExact: IEEE double precision exact implementation for both force and energies 

• LJ_612_ALL_SingleInterp1: IEEE single precision linear interpolation for both force and energies 

• LJ_612_ALL_DoubleInterp1 : IEEE double precision linear interpolation for both force and energies 

• LJ_612_ALL_SingleBestFixed: best fixed point implementation for at least single precision accuracy for both 

force and energies 

• LJ_612_ALL_DoubleBestFixed:  best fixed point implementation for at least double precision accuracy for 

both force and energies 

 

Ideally, to minimize necessary data transfers between host memory and FPGA, top-level functions that call 

compute-intensive functions has to be migrated to the accelerator device. For a pure LJ interaction model, this 

means the integrator for the equation of motion, e.g. Velocity Verlet is best migrated to the FPGA. 

Unfortunately, for algorithms requiring heavily floating-point operations, this is still a difficult task on today’s 

available FPGA devices. Nonetheless, the molecular dynamics API anticipates future improvements in 

individual FPGA capabilities and further extensions to the GenAPI, and follows a top-down decomposition of 



 

the computational workflow in each functional family. At the next level, the computation of total forces acting 

on each particle and the total non-bonding energy are defined. This function usually calls the computational 

kernel in any LJ simulation – the function which computes a pairwise energy and forces for a given particle pair, 

and thus the bottom-level function in the hierarchy is also considered. 

 

 

Table 2: Overview of the preliminary OpenFPGA Molecular Dynamics API 

ofpgaMD_LJ_init 
The function initializes required resources for the specified FPGA 

device. For a defined type of precision and problem size given by the 

maximum number of particles and maximum number of particle pairs, 

respectively, a matching to available hardware resources is attempted 

internally, and a data distribution topology is return in the LJ_handle. 

ofpgaMD_LJ_setparam 
This function loads the LJ parameters ε and σ for n_types particle pair 

types in a certain precision format to a storage location compatible with 

the algorithm already registered. 

ofpgaMD_LJ_set_masses 
This function loads the masses for each of the particle types in a certain 

precision format to a storage location compatible with the algorithm 

already registered. 

ofpgaMD_LJ_reg_buffer1D 
This registers buffers for coordinates and forces in vector representation; 

if not yet allocated buffer space is made available. 

ofpgaMD_LJ_reg_buffer2D 
This function registers buffers for coordinates and forces in array 

representation; if not yet allocated buffer space is made available. 

ofpgaMD_LJ_run 
This function starts the calculation of Lennard-Jones energies and/or 

forces for data allocated. 

ofpgaMD_LJ_VVrun 
This function starts the Velocity Verlet integration with the parameter 

and data supplied using the LJ potential for the particle interaction. 

ofpgaMD_LJ_status 
This is a non-blocking call to test the status of a running LJ computation 

ofpgaMD_LJ_wait 
This is a blocking call waiting for completion of a LJ computation 

ofpga_1dfft_config 
The function sets the FFT size and FFT direction (forward or reverse) 

and direction of the FFT. 

ofpga_3dfft_config 
This function configures the FPGA for computing a 3 dimensional FFT 

 

 

 

 

 

For an implementation of the Velocity Verlet algorithm the intention of using the propose API is illustrated 

with the following pseudo code: 

 

 
// Schematic velocity Verlet code with GenAPI and MD_API 
// initialize FPGA infrastructure 
fpga = ofpga_init(device_id,msglvl) 
 
// retrieve hardware configuration information 
fpga_prop = ofpga_device_prop(device_id,msglvl) 
 
// select appropriate algorithm 
If ( fpga_prop.maxSRAM >= 4 MB ) then  

    alg_prop � xml_string_propierties 
    alg_id = ofpga_register_algorithm(fpga,bitfile,alg_prop,msglvl) 
else   return SORRY   // bad luck 
 
// load the bitstream file into the FPGA 
status = ofpga_load_algorithm(fpga,alg_id,msglvl) 
 
// now lets check we have the resources we need for the LJ part 
LJ_handle = ofpgaMD_init (device_id,alg_id,max_part,max_pairs,  
                          LJ_612_FastestAvailable, IEEE32, IEEE32, msglvl) 
If ( LJ_handle == NULL ) return SORRY 

 
// set the LJ parameters  
status = ofpgaMD_LJ_setparam(LJ_handle,IEEE32,n_types,*epsilon,*sigma, 
                             return_code,msglvl) 
 



 

// same for particle masses 

status = ofpgaMD_LJ_set_masses(LJ_handle,IEEE32,n_types,*Masses, 
                               return_code,msglvl) 
 

// now allocated the buffer for the coordinates, velocities, forces 
status = ofpgaMD_LJ_reg_buffer2D(LJ_handle,IEEE32,n_part,n_pairs,*XYZ, 
                                 *type,*nb,*Vxyz,*Fxyz,return_code,msglvl) 
 

// fill initial data, relax, and thermalize 

*XYZ = random(); *Vxyz = Boltzmann(temperature); *Fxyz = random(); 

relax(); thermalize(); 

 

// --- the big loop over a couple of MD steps 

While ( I_am != tired ) { 

 

   // if no error, we have everything to start n sweeps on FPGA 
   status = ofpgaMD_LJ_VVrun(LJ_handle,n_sweeps,delta_t,cutoff_rs, 
                             cutoff_tbl,(energy&&forces),return_code, 
                             msglvl) 
 

   // wait to be completed; another thread can do something useful... 
   status = ofpgaMD_LJ_wait(LJ_handle,return_code,msglvl ) 
 

   // calculate properties and e.g. check for conservation of energy on CPU 
   energy = ofpga_read_register( fpga,e_register, msglvl 
   status = analyse_data (*XYZ, *Vxyz, energy) 

   // print stuff out 

} 
// well done 
  status = ofpga_close ( fpga, msglvl ) 
// END 
 

 

 

 

 

The FFT API considers two possible program partitions, at the fft_1d and the fft_3d function.  The API for the 

fft_1d function consists of the GenAPI, plus one additional function, ofpga_1dfft_config. The purpose of this 

function is to set the FFT size and FFT direction (forward or reverse) and direction of the FFT. In order to 

compute an FFT, the user would invoke the following pseudo code using GenAPI commands: 

 

 

 
//Program to compute FFT 
//Initialize FPGA 
fpga   = ofpga_init ( device_id, msglvl ) 
// Load FFT Algorithm 
status = ofpga_load_algorithm ( fpga, fft1d_algorithm_id, msglvl ) 
 
// Configure FFT length and direction 
status = ofpga_1dfft_config (fpga, size, direction, msglvl) 
 
// Send data message to FPGA (may include multiple FFTs) 
status = ofpga_send ( fpga, data,  dest_id, length, msglvl ) 
 
WHILE message not received 
// Check to see if FFT is complete 
status = ofpga_receive ( fpga, data, src_id, length, msglvl ) 
 
// INSERT OTHER PROCESSING TASKS HERE IF DESIRED 
 
END 
 
// Close FPGA 
status = ofpga_close ( fpga, msglvl ) 

 

 

 

If required by a particular hardware platform, the ofpga_registered_malloc function should be used to create a 

memory space for FPGA I/O. 



 

5.   Early API Implementation and Validation 

The aim of this paper is to present a viable common and portable API for molecular dynamics applications 

employing reconfigurable computing devices as application accelerators. A reference implementation of the 

extended GenAPI for a first set of FPGA platforms is in progress. A stub implementation with a test program 

written in C is available on request5. 

 

The primary goal of the investigations were to determine the overall feasibility of the APIs for application 

development across several development environments.  In fulfillment of this aim, development environments 

examined and explored included Mitrion-C, Dime-C, Nallatech H101 platforms, Cray XD1 supercomputers with 

Virtex4 LX100 FPGAs, and DRC FPGA plugins. While still in progress, the initial results are very promising for 

a feasible and portable API. The authors of this paper have exercised the API with an initial choice of the 

LAMMPS molecular dynamics application, examining the potential for the API for accelerating this application. 

The evaluations have exercised both the FFT and Lennard-Jones elements of the molecular dynamics API as 

well as the functions of the vendor neutral GenAPI.  

  

Convertibility of the LAMMPS application to acceleration with reconfigurable computing hardware was 

demonstrated using existing FFT routines readily converted to the API specification presented. Within the 

LAMMPS application, the Particle-Particle Particle-Mesh (PPPM) method uses the FFT in computations. These 

early results, conducted on a Cray XD1 supercomputer with Virtex4 LX-100 FPGAs were successful in 

demonstrating the viability of the API for introduction into the LAMMPS application. Not unexpectedly, 

performance of the 1D FFT was not adequate to deliver compelling performance improvement and necessitated 

the development of the 3D FFT API. Early efforts in determining the viability of the 3D FFT API are very 

positive with a determination of ample space on the FPGA device for necessary transformations and cores and 

projected speed-up for the FFT evaluation within the application in excess 10-fold for the average case. 

 

The authors have also implemented the molecular force and move functions with a test program into a single 

Xilinx Virtex-4 LX-100 FPGA being clocked at 100 MHz on a Nallatech H101-PCIXM board placed in an 

AMD Opteron server. The interface between the AMD CPU and FPGA was a standard PCIX running 133MHz. 

Development tools were Nallatech DimeC for the compiler and DimeTalk for building the support devices such 

as memory interfaces, on-chip routers, and the PCIX interface. DimeC was used to create hardware VHDL. The 

Xilinx ISE 8.2 tool was then used to do the synthesis, place and route and to generate the bitmap. The C code is 

arranged so that API DMA calls were added to send data from the CPU to the FPGA at n step intervals. After the 

n step iterations on the FPGA, the data block was read back into the CPU for further analysis. 

 

Some observed challenges require discussion. The first challenge to note is that of placing most of the 

molecular dynamics calculation into the FPGA. This includes the Lennard-Jones potentials and the Verlet 

algorithm together with support functions to handle the pair-wise interaction potentials. The FPGA must be of 

sufficient size to support tiers of implementation. The second challenge was the amount of memory required for 

the coordinates, velocities, and forces of each of the atoms. As the number of atoms grows, the data array grows 

well beyond the available onboard FPGA BLOCK RAM and forces the design to use large blocks of external but 

directly coupled SDRAM. As the system size increases, memory requirements will increase and these issues will 

need to be resolved such that the common molecular dynamics API is not restricted by the amount of external or 

internal RAM available. Ideally, the molecular dynamics API should be defined to be transparent to the 

underlying layer that supports the manufacturer’s native API calls, employing portable general options. In this 

case, the Nallatech FUSE API calls used for the DMA data transfers from the CPU to the H101-PCIXM board. 

Not unexpectedly, a third challenge is in keeping hardware multiplies to a minimum in order to fit the algorithm 

onto the LX-100 FPGA device. 

 

Preliminary results look very promising and demonstrate that a general molecular dynamics API is feasible 

for FPGAs. The necessary calculations do fit on a single Xilinx Virtex-4 LX-100 FPGA using a commercially 

available tool set. An increase in speed is expected where the limiting factor will be dependent on the volume of 

data transfers that are required for a given implementation. Specific and comparable results across a variety of 

reconfigurable systems is anticipated as implementations are completed and validated for the presented general 

and molecular dynamics specific API. 

 

 

                                                           
5 contact OpenFPGA or Thomas Steinke at steinke@zib.de 



 

6.   Conclusions and Outlook 

This paper presents a candidate for a common API for molecular dynamics calculations in environments with 

reconfigurable computing hardware. While still in early stage development, the API has been proven viable for 

implementation and development across several reconfigurable computing systems and application development 

environments. The goal for increased performance of the API in practice across multiple platforms remains still 

to be demonstrated, although early indications are very positive for meaningful acceleration in the two dominant 

areas of interest based on the conclusions of prior work and our own experience.  

  

Further work is needed in several areas, not the least of which is expanding the successful demonstration of 

the API across more reconfigurable computing application development and execution environments. 

Optimizations within each implementation are expected to result in high-performance accelerated results 

portably supported across several environments. A well selected set of standard molecular dynamics benchmarks 

will be extremely valuable to confirm the performance of the multitude of reconfigurable computing 

development and execution environments.  

 

The proposed APIs have implications beyond the reconfigurable computing application domain and transcend 

into the broader use of accelerators. The abstraction, with its decoupling of accelerator specifics from the method 

request is equally viable for use with specialized Graphical Processor Units, Cell processor implementations and 

more creative hybrid combinations including multiple CPU cores.  
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Appendix A: OpenFPGA GenAPI Function Definitions 

This Appendix includes the definition of functions of the GenAPI required for the proposed API for molecular 

simulations. 

 

Note: Most of the proposed function has the argument msglvl to control the verbosity for printouts inside the 

function. In the tables of the argument description, this argument is omitted for simplicity. 

 

 

Function: ofpga_init 

Usage:  fpga = ofpga_init ( device_id, msglvl ) 

 

Parameter I/O Description 

fpga O FPGA handle structure or NULL pointer 

device_id I Vendor & platform specific ID 

 

Description: The function opens the specified FPGA device(s) on a node and performs low-level system 

initialization. 

 

 

Function: ofpga_device_prop 

Usage:  fpga_prop = ofpga_device_prop ( device_id, msglvl ) 

 

Parameter I/O Description 

fpga_prop O FPGA property structure or NULL pointer 

device_id I Vendor & platform specific ID 

 

Description: The function returns hardware configuration data of the FPGA device, e.g. types, numbers and 

sizes of attached memory modules, bitstream load bandwidth, and so on. 

 

 

Function: ofpga_close 

Usage:  status = ofpga_close ( fpga, msglvl ) 

 

Parameter I/O Description 

fpga I FPGA handle structure 

status O Status = OFPGA_OK | error code 

 

Description: Data and FPGA device resources are cleared. 

 

 

Function: ofpga_register_algorithm 

Usage:  algorithm_id = ofpga_register_algorithm ( fpga,   
     bitstream_file, algorithm_properties, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

bitstream_file I path to bitstream file 

algorithm_properties I metadata of the algorithm including precision 

information 

algorithm_id O unique ID of the registered algorithm 

 

Description: This function registers the bitstream files, i.e. an algorithm in a registry per node. If supported, this 

pre-loads the bitstream into a dedicated memory location near the FPGA chip. Multiple calls should be supported 

if we want to support deep scaling per node or reconfiguring the FPGA during runtime within one application. 

 

 

 



 

 

Function: ofpga_load_algorithm 

Usage:  status = ofpga_load_algorithm ( fpga, algorithm_id, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

algorithm_id I ID of an registered algorithm 

Status O OFPGA_OK | error_code 

 

Description: The function loads the registered algorithm into the FPGA, i.e. the FPGA is configured.  

 

 

Function: ofpga_registered_malloc 

Usage:  buff_ptr = ofpga_registered_malloc ( fpga, memid, size, mode, 
    msglvl ) 
 

Parameter I/O Description 

fpga I FPGA handle structure 

memid I FPGA memorz bank identifier 

size I size of the memory space to be allocated 

mode I access mode for the memory area, e.g. read-only,    

write-only or read-and-write for FPGA device 

returns O valid memory adress for FPGA data transfer or 

NULL pointer in error case 

 

Description: The function allocates memory and registers the allocated buffer for a given memorz bank 

identifier. The memory aligned to be optimal for data transfers, e.g. on memory page boundaries. 

 

 

Function: ofpga_run 

Usage:  status = ofpga_run ( fpga, msglvl ) 

 

Parameter I/O Description 

fpga I FPGA handle structure 

Status O OFPGA_OK | err_code 

 

Description: The function starts the algorithm asynchronously on the configured FPGA, i. e., it should return 

immediately. 

 

 

Function: ofpga_status 

Usage:  fpga_stat = ofpga_status ( fpga, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

fpga_stat O structure with status information 

 

Description: The function provides status information about the running algorithm as much as it supported by 

the platform. 

 

 

Function: ofpga_bwait 

Usage:  status = ofpga_bwait ( fpga, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

Status O OPFGA_OK | error_code 

 

Description: The function call, a blocked wait, returns if the run on the FPGA is finished. 

 



 

 

 

Function: ofpga_read_register 

Usage:  value = ofpga_read_register ( fpga, register_id, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

register_id I identifies register 

value O returned value 

  

Description: The function transfers one word from a FPGA “register” to host memory. Register is an algorithm 

dependent interface to one word wide parameters.  

 

 

Function: ofpga_write_register 

Usage:  status = ofpga_write_register ( fpga,  register_id, value, 
    msglvl ) 
 

Parameter I/O Description 

fpga I FPGA handle structure 

register_id I identifies destination register 

Value I word to be written 

Status O OPFGA_OK | error_code 

 

Description: The function writes one word from host to a FPGA register destination. 

 

 

Function: ofpga_send 

Usage:  status = ofpga_send ( fpga, data,  dest_id, length, msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

data I buffer address of source data 

dest_id I data destination identifier for FPGA 

length I number of bytes to be sent 

status O OPFGA_OK | error_code 

 

Description: This function sends a data block to the FPGA device. 

 

 

Function: ofpga_receive 

Usage:  status = ofpga_receive ( fpga, data, src_id, length,  msglvl ) 

 

Parameter I/O Description 

Fpga I FPGA handle structure 

Data I destination address 

src_id I data source identifier for FPGA 

Length I number of bytes sent 

Status O OPFGA_OK | error_code 

 

Description: This function receives a data block from a FPGA device. 

 

 



 

Appendix B: OpenFPGA MD API Function Definitions 

Note: Most of the proposed function has the argument msglvl to control the verbosity for printouts inside the 

function. In the tables of the argument description, this argument is omitted for simplicity. 

 

 

Function: ofpgaMD_LJ_init 

Usage:  LJ_handle = ofpgaMD_init ( device_id, algorithm_id, max_part, 
    max_pairs, algoritm_precision, input_precision, 
    output_precision, msglvl ) 

 

Parameter I/O Description 

device_id I FPGA device identifier 

algorithm_id I Algorithm identifier obtained from registry 

max_part I Maximum number of particles to be processed 

max_pairs I Maximum number of particle pairs to be processed 

algorithm_precision I Requested precision tag of the algorithm 

input_recision I Type of precision for input data 

output_precision I Type of precision for output data  

LJ_handle O Handle to structure carrying LJ status information 

 

Description: The function initializes required resources for the specified FPGA device for the calculation of 

Lennard-Jones properties. For a defined type of precision and problem size given by the maximum number of 

particles and maximum number of particle pairs, respectively, a matching to available hardware resources is 

attempted internally, and a data distribution topology is return in the LJ_handle. 

 

 

Function: ofpgaMD_LJ_setparam 

Usage:  status = ofpgaMD_LJ_setparam (LJ_handle, precision, n_types, 
epsilon, sigma, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handel from LJ_init 

precision I Precision type of LJ constants data to be submitted 

n_types I Number of particle pair types 

epsilon I LJ ε constants for n_types 

sigma I LJ σ constants for n_types 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This function loads the LJ parameters ε and σ for n_types particle pair types in a certain precision 

format to a storage location compatible with the algorithm already registered. 

 

 

Function: ofpgaMD_LJ_set_masses 

Usage:  status = ofpgaMD_LJ_set_masses (LJ_handle, precision, n_types, 
ptr_Mass, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handel from LJ_init 

Precision I Precision type to be submitted 

n_types I Number of particle types 

ptr_Mass I Pointer to particle masses 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This function loads the masses for each of the particle types in a certain precision format to a 

storage location compatible with the algorithm already registered. 

 



 

 

Function: ofpgaMD_LJ_reg_buffer1D 

Usage:  status = ofpgaMD_LJ_reg_buffer1D (LJ_handle, precision, 
  n_particles, n_pairs, ptr_X, ptr_Y, ptr_Z, ptr_type, ptr_nb, 
  ptr_Vx, ptr_Vy, ptr_Vz, ptr_Fx, ptr_Fy, ptr_Fz, return_code, 
  msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

Precision I Precision type of LJ constants data to be submitted 

N_particles I Number of particles 

N_pairs I Number of particle pairs, upper limit estimate 

ptr_{X, Y, Z} I Pointer to vectors of X, Y, and Z coordinates 

ptr_{Vx, Vy, Vz} I Pointer to vectors of velocities in X, Y, and Z 

direction 

ptr_{Fx, Fy, Fz} I Pointer to vectors of forces in X, Y, and Z direction 

ptr_type I Pointer to particle types 

ptr_nb I Pointer to neighbour list structure 

return_code O Return information structure 

Status O OK or ERROR 

 

Description: This registers buffers for coordinates and forces in vector represenation; if not yet allocated buffer 

space is made available. 

 

 

Function: ofpgaMD_LJ_reg_buffer2D 

Usage:  status = ofpgaMD_LJ_reg_buffer2D (LJ_handle, precision,  
   n_particles, n_pairs, ptr_XYZ, ptr_type, ptr_nb,  
   ptr_Vxyz, ptr_Fxyz, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

Precision I Precision type of LJ constants data to be submitted 

n_particles I Number of particles 

n_pairs I Number of particle pairs, upper limit estimate 

ptr_XYZ I Pointer to array of coordinates 

ptr_Vxyz I Pointer to array of velocities 

ptr_Fxyz I Pointer to array of forces 

ptr_type I Pointer to particle types 

ptr_nb I Pointer to neighbour list structure 

return_code O Return information structure 

Status O OK or ERROR 

 

Description: This function registers buffers for coordinates and forces in array representation; if not yet 

allocated buffer space is made available. 

 

 

Function: ofpgaMD_LJ_run 

Usage:  status = ofpgaMD_LJ_run (LJ_handle, cutoff_rs, cutoff_tbl, 
  comp_flag, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

cutoff_rs I Cut off value in real space 

cutoff_tbl I Cut off value for neighbour table 

comp_flag I Bitfield with flags to indicate which properties has 

to be calculated: energy, forces, virial, … 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This function starts the calculation of Lennard-Jones energies and/or forces for data allocated. 



 

 

 

Function: ofpgaMD_LJ_status 

Usage:  status = ofpgaMD_LJ_status (LJ_handle, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This is a non-blocking call to test the status of a running LJ computation. 

 

 

 

 

Function: ofpgaMD_LJ_wait 

Usage:  status = ofpgaMD_LJ_wait (LJ_handle, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This is a blocking call waiting for completion of a LJ computation. 

 

 

Function: ofpgaMD_LJ_VVrun 

Usage:  status = ofpgaMD_LJ_VVrun (LJ_handle, n_sweeps, delta_t,  
   cutoff_rs, cutoff_tbl, comp_flag, return_code, msglvl ) 

 

Parameter I/O Description 

LJ_handle I Handle from LJ_init 

n_sweeps I Number of sweeps to be run 

delta_t I Time step for integration 

cutoff_rs I Cut off value in real space 

cutoff_tbl I Cut off value for neighbour table 

comp_flag I Bitfield with flags to indicate which properties has 

to be calculated: energy, forces, virial, … 

return_code O Return information structure 

status O OK or ERROR 

 

Description: This function starts the Velocity Verlet integration with the parameter and data supplied using the 

LJ potential for the particle interaction. 

 

 

Function: ofpga_1dfft_config 

Usage:  int ofpga_1dfft_config (fpga, size, direction, msglvl) 

Parameter I/O Description 

fpga I FPGA handle structure 

size I Size of the transform, N=16, 32, 64, 128 

direction I Direction: Forward (1) or Backward (0) FFT 

returns O status := OFPGA_OK | error_code 

 

Description: The purpose of this function is to set the FFT size and FFT direction (forward or reverse) and 

direction of the FFT. 

 

 

 



 

Function: ofpga_3dfft_config 

Usage:  int ofpga_3dfft_config (fpga, size, direction, msglvl) 

Parameter I/O Description 

fpga I FPGA handle structure 

size I Size of the transform, N=16, 32, 64, 128 

direction I Direction: Forward (1) or Backward (0)  

returns O status := OFPGA_OK | error_code 

 

Description: The API for the fft_3d() is essentially the same as that for the fft_1d function.    


