
Applying Field Programmable Logic Arrays to Biological Problems

Daryl Popig
1
, Debra Ryle

1
, David Pellerin

2
and Eric Stahlberg

3

1
Accelerated Data Concepts, LLC Columbus, OH

Email: {dpopig, dryle}@acceleratedata.com
2
Impulse Accelerated Technologies, Inc. Kirkland, WA

Email: david.pellerin@ImpulseC.com
3
 Ohio Supercomputer Center, Columbus, OH

Email: eas@osc.edu

Abstract

Today’s vast amount of bioinformatics

data is growing beyond the researcher’s

ability to analyze and derive value from

the information in a reasonable amount

of time. Parallel software acceleration

technologies are increasingly critical for

achieving the necessary processing rate

for this information. In this paper, we

will show how one parallel technology, a

Field Programmable Gate Array

(FPGA), can be applied in biological

problem solving computer strategies to

increase computational speed.

Background

FPGA (Field Programmable Gate Array)

technology uses large-scale integrated

circuits made up of programmable logic

that can evaluate an immense array of

the basic logic gate functionality

(AND/OR/XOR/NOT) comprising

complex combinatorial functionality

such as decoders and adders. This

combined logic can be easily

programmed and reprogrammed to the

set of interconnected hardware-level

gates to specific settings which

implement a computationally extensive

algorithm. Because FPGAs are

inherently parallel devices, the FPGA

can take advantage of data level

parallelism by splitting the data across

multiple FPGA internal pipelines to

attain the required speedup. Several

bottlenecks associated with general-

purpose processors are eliminated given

that FPGAs can perform parallel

operations concurrently on large streams

of data.

Biological applications that require

computational complexity such as

pattern matching, multiple sequence

alignment, structural genomics, protein-

ligand binding for drug discovery,

network analysis, and gene sequence

analysis can take advantage of the highly

parallel execution provided by using

FPGAs. Application speedup can

impact research efforts by reducing the

time it takes to analyze the data. This

paper will give a brief outline of how

FPGAs can be applied to computational

biological problems and what FPGA

tools are currently available to

researchers in the life sciences field.

Computational Challenges in

Research

Using traditional parallel software

engineering techniques, research

software must employ large numbers of

general purpose processors (e.g. clusters)

to complete complex operations within a

prescribed timeframe. With the general

leveling off of processor clock speeds

and the corresponding end of Moore’s

law as it applies to processor

capabilities, new approaches are needed

to reach the next level of computational

performance. FPGA technology has

reached a state where performance gains

in this technology are anticipated to

exceed gains in general-purpose

processors [Underwood and Hemmert,

2004].

Many bioinformatics applications have

both shown and delivered on the promise

of using FPGA technology to accelerate

performance relative to a general

purpose processor [Smith and Stahlberg

2006; Fernando et al 2006; Regester et al

2005; Bondhugula et al 2006]. The most

prevalent successful implementation is

the Smith-Waterman algorithm used to

identify similarities among

bioinformatics sequences. Speed-ups on

the order of 30-fold have been reported

for this algorithm [Regester et al 2005].

Graph network analysis implementations

of the classic Floyd-Warshall algorithm

have shown similar speedups

[Bondhugula et al 2006].

Another such example, a drug docking

application that simulates the molecular

interactions of a drug candidate in-silico,

can benefit from highly parallel

execution. The code, written in C, will

run the simulation of the atomic

interactions. Similar to molecular

dynamics simulations, [Smith et al 2005]

these docking simulation runs require

algorithms to calculate the interaction

energies of all pair-wise atom

interactions. This now becomes a

massively parallel problem that is ideally

suited for the FPGA. The FPGA can be

custom loaded with efficient data

structures and algorithms specific to the

atom to atom calculations that are

required.

Another challenge for scientific

applications is the need to search

through unstructured and semi-

structured data. Much of this

unstructured data is in the form of digital

images. Efficiently searching through

unstructured data (video, audio,

instrument signals, etc.) requires special

programming beyond that available in

the standard SQL specification. FPGA

accelerated data searches have been

shown to gain as much as a 40%

increased speedup.

Applying FPGAs to Meet these

Challenges

An FPGA is a semiconductor IC

(Integrated Circuit) device containing

programmable components that can be

connected together to form digital logic

circuits made up of basic gates, counters,

adders, shift registers, flip-flops,

memory and many other combinational,

composite or sequential logic elements.

These fundamental circuits can be

interconnected to form entire digital

systems on a programmable chip.

FPGAs can increase the computational

speed in scientific/biological

calculations by acting as co-processors

allowing conventional microprocessors

(CPUs) to offload computationally

expensive data processing. During

system initialization, the FPGA is

programmed with a bit stream

representing the hardware accelerator.

This bit stream is used to configure the

logic gates inside the FPGA, and

implements a specific algorithm in

hardware. Once the FPGA has been

configured, the CPU can then send the

data to be processed to the FPGA’s

hardware-implemented algorithm, where

the data is processed and the result is

returned to the CPU. When a different

algorithm is required, the CPU simply

reloads the FPGA with the appropriate

bit stream which codes for the new

algorithm and the device is ready to do

an entirely different calculation using

hardware.

Emerging Approaches to FPGA

Application Development

Creating applications that involve FPGA

acceleration requires different design

methods and tools than traditional

software design. Scientific computation

advantages can best be realized by

providing a seamless integration path

between the software application and the

FPGA. Using this approach, a domain

scientist can focus on the science and

research process rather than on the

software/hardware interfacing and

FPGA tool development. Fortunately,

due to advances in FPGA compiler tools,

the bit stream that codes the algorithmic

computation can be programmed by the

scientist/user using standard C

programming techniques.

Using standard C for application

development has many advantages, not

the least of which is the opportunity to

use iterative, software-oriented methods

of design optimization and debugging.

With the Impulse C tools, for example,

both hardware and software elements of

the complete application can be

described, partitioned and debugged

using standard C programming tools

such as GCC and GDB. During this

process, then application programmer

can make use of familiar C-code

optimizations to increase performance,

without having a great deal of FPGA-

specific hardware knowledge.

The resulting optimized C code is

compiled by the FPGA development

tools (in particular, the C-to-hardware

compiler) to create a parallel

hardware/software implementation. The

FPGA map, place and route tools then

take the output from the compiler—that

portion of the application representing

the application accelerator(s)—and

convert that into an FPGA bit stream.

The bit stream is then loaded into the

FPGA before computation is started. The

complete C-to-hardware compilation

process can be summarized as:

• Describe the complete application in

C language and use a standard C

debugger to verify the algorithm.

• Profile the application to find the

computational “hot spots”.

• Use data streaming, message passing

and/or shared memory to partition

the algorithm into multiple

communicating software and

hardware processes.

• Use interactive optimization tools to

analyze and improve the

performance of hardware-accelerated

functions.

• Use a C-to-hardware compiler to

generate synthesizable hardware, in

the form of hardware description

language files.

• Export the generated hardware

description files to the FPGA

optimization and mapping tools.

• Download the resulting FPGA

bitmap to the target FPGA device.

The only drawback to the above

approach is that, because the FPGA

circuitry is so dense, the FPGA mapping

tools can require a considerable amount

of compile time to finish. This, however,

has no effect on the application run time

because, once generated, the FPGA bit

file can be stored on disk (or in some

cases in Flash RAM) and reloaded as

needed.

On the hardware side, the FPGA is

usually mounted to a PCI board that can

be mounted into a high performance

desktop or work station. Accelerator

board examples include the Nallatech

BEN series of PCI boards and the

Annapolis Micro Systems Wildforce

series of PCI boards. Larger systems

such as the Cray XD1, SRC Computers

SRC-7 or the SGI RASC can have

multiple nodes with multiple FPGAs and

multiple CPUs. These high performance

hybrid parallel systems can take

advantage of both the conventional

microprocessors and the reconfigurable

FPGA hardware resources to do the most

efficient computing and partitioning of

the hardware and software portions of

the code to achieve maximum speedup.

Ultimately, the system chosen should be

the one that best suits the researcher’s

needs. By looking at the ease of

development of the tool sets, technical

support available, the necessary data

bandwidth, scalability, power

consumption, price, communication

among the nodes, number of FPGAs,

number of microprocessors, clock speed,

and the amount of memory, an

appropriate system can be characterized

and procured.

On the software side, there are two

primary challenges to address to be

successful in FPGA application

development. The first challenge to a

new FPGA user is to define which

algorithms can readily exploit FPGA

fine-grained parallelism for the problem.

These algorithms have historically

proven to be those with low-level data

parallelism and an absence of floating

point operations. More recently, floating

point libraries have become available

that promise to increase the range of

candidate algorithms.

Once a candidate algorithm has been

identified, a second closely related

challenge emerges in algorithm

partitioning. In order to be successful

with current hybrid architectures, the

algorithm must generally be partitioned

in a manner which minimizes the

communication to the FPGA while

maximizing the actual computation on

the FPGA.

Our experience with using a single

FPGA on the Cray XD1 for a searching

project proved that the concept of

noninvasive interfacing an FPGA to an

enterprise database system is entirely

possible [Ryle et al 2005]. We were

able to demonstrate a seamless

integration strategy with a popular

database environment (Oracle 10G on

Solaris) and a programmable FPGA

server (Cray XD1). While using

resource management frameworks such

as the Sun Grid Engine, we wanted to

demonstrate the feasibility of hardware

resource sharing without first deploying

more complicated grid and resource

management infrastructures. In both

deployment architectures, we were

successful at application integration with

a remote FPGA. This further

demonstrates the ease in which an FPGA

server can be integrated into a

production database environment, with

minimal disruption, for complex query

search, development and optimization.

The authors also have experience in

implementing the Smith-Waterman

algorithm on an FPGA and have seen

publications boasting computational

speedups of 64-fold over a conventional

CPU implementation on the Cray XD1

[Margerm 2006]. The Smith-Waterman

algorithm is used in bioinformatics and

uses dynamic programming concepts

that will take an alignment of any length,

and at any location, in any sequence, and

determines whether there is an optimal

alignment that can be found.

Emerging Tools for Rapid FPGA

Development

The design approach starts with an

analysis of the problem to determine

which part of the problem is best suited

to execution in the FPGA. The program

should be partitioned into software

(executed by general-processors) and

hardware (executed in the FPGA). A

likely candidate to load in hardware

would be any part of the program that

can be run in separate parallel threads or

any routines that contain computational

routines. Keep in mind that data

movement between these two partitions

should be considered when deciding the

partition divisions. In fact, using an

FPGA for acceleration of certain

algorithms can result in a simple shifting

of the processing bottleneck from one of

computation, to one of data movement.

It is therefore important to make use of

higher-level tools that support fast

prototyping and iterative analysis.

Programming tools to assist in FPGA

application development are emerging

from companies such as SRC, Impulse,

Mitrionics, Nallatech, and DSPlogic.

These tools allow programs written in C

(or in C-like languages) to be converted

into logic appropriate for FPGA

mapping. A complete tool flow,

including software provided by the

FPGA manufacturer, takes the C code

through the map, route and place steps

while creating an optimal FPGA routing.

To allow increased use of statement-

level and system-level parallelism, these

tools are supplied with functions

(Impulse C), macros (Mitrionics) or

directives (SRC) that can be referenced

in the software code to interface with the

hardware code, for example to set up and

manage a streaming or shared memory

interface. This is important because the

design of software-to-hardware

communications may have as great an

impact on application performance as

actual computation acceleration.

Once the software code is compiled on

general-processors and the hardware

converted to bin modules and loaded

into the FPGA, the two components—

hardware and software—interact through

the generated interfaces.

An international effort has started as a

result of the diversity in approaches to

FPGA application development. The

effort, called OpenFPGA (see

www.openfpga.org), is a cooperative

effort among FPGA application users,

FPGA manufacturers, and FPGA

software vendors to ultimately

standardize elements of the FPGA

application to improve overall

portability. At the present time, the effort

has participation from over 300

individuals worldwide in over 30

countries [Stahlberg et al 2006]. In the

near future, common approaches to

FPGA application development are

expected to emerge, easing further the

effort required to create high-performing

FPGA-enhanced applications.

Summary

In summary, we have shown that life

science algorithms can take advantage of

FPGAs as a viable resource to improve

highly computationally expensive

processing by moving expensive

computations from the CPU and into the

specifically designed logic inside the

FPGA. Algorithms such as the Smith-

Waterman have shown significant speed

improvement when implemented on a

FPGA while integration to current

infrastructure such as databases is

possible. FPGAs are becoming easier to

use as the development tools get better

and as the prices on FPGAs falls as

smaller/denser chip manufacturing

technology becomes available, thus

making them affordable to use in more

computing applications. Support is also

increasing as FPGAs now have the

attention of world-wide computer

scientist and developers though

OpenFPGA where standards are being

derived to open up FPGA use for a wide

range of high level applications.

References

U. Bondhugula, A. Devulapalli, J.Dinan,

J. Fernando, P. Wyckoff, E. Stahlberg,

P. Sadayappan, “Hardware/Software

Codesign for All-Pairs Shortest-Paths on

a Reconfigurable Supercomputer”, 14
th

Annual IEEE Symposium on Field-

Programmable Custom Computing

Machines, (FCCM ’06), 2006

S. Margerm, " Reconfigurable

Computing in Real-World

Applications", FPGA Journal, February,

2006.

K. Regester, J. Byun, A. Mukherjee, A.

Ravindran, “Implementing

Bioinformatics Algorithms on Nallatech-

Configurable Multi-FPGA Systems”,

XCell Journal, Second Quarter, 2005

D. Ryle, D. Popig, E. Stahlberg,

“Integrating FPGA Technology and

Database Management Systems on

Solaris Systems”, Proceedings Sun

Users Performance Group Conference,

Arlington, VA, April 18, 2005

H. Smith and E. Stahlberg, “XD1

Implementation of a SMART

Coprocessor for Fuzzy match in

Bioinformatics Applications”, in process

M. Smith, J. Vetter, X. Liang,

“Accelerating Scientific Applications

with the SRC-6 Reconfigurable

Computer: Methodologies and

Analysis”, Proceedings Reconfigurable

Architectures Workshop (RAW), 2005.

E. Stahlberg, K. Wohlever, D. Strenski,

“Status Report of the OpenFPGA

Initiative: Efforts in FPGA Application

Standardization”, in process.

E. Stahlberg, J. Fernando, J. Doak, K.

Wohlever, “Accelerated Biological

Meta-Data Generation and Indexing on

the Cray XD1”, Proceedings Cray Users

Group Conference, Albuquerque, NM,

May 15, 2005

