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Abstract 

Today’s vast amount of bioinformatics 

data is growing beyond the researcher’s 

ability to analyze and derive value from 

the information in a reasonable amount 

of time.  Parallel software acceleration 

technologies are increasingly critical for 

achieving the necessary processing rate 

for this information.  In this paper, we 

will show how one parallel technology, a 

Field Programmable Gate Array 

(FPGA), can be applied in biological 

problem solving computer strategies to 

increase computational speed.  

 

Background  

 

FPGA (Field Programmable Gate Array) 

technology uses large-scale integrated 

circuits made up of programmable logic 

that can evaluate an immense array of 

the basic logic gate functionality 

(AND/OR/XOR/NOT) comprising 

complex combinatorial functionality 

such as decoders and adders. This 

combined logic can be easily 

programmed and reprogrammed to the 

set of interconnected hardware-level 

gates to specific settings which 

implement a computationally extensive 

algorithm.  Because FPGAs are 

inherently parallel devices, the FPGA 

can take advantage of data level 

parallelism by splitting the data across 

multiple FPGA internal pipelines to 

attain the required speedup.  Several 

bottlenecks associated with general-

purpose processors are eliminated given 

that FPGAs can perform parallel 

operations concurrently on large streams 

of data.        

 

Biological applications that require 

computational complexity such as 

pattern matching, multiple sequence 

alignment, structural genomics, protein-

ligand binding for drug discovery, 

network analysis, and gene sequence 

analysis can take advantage of the highly 

parallel execution provided by using 

FPGAs.  Application speedup can 

impact research efforts by reducing the 

time it takes to analyze the data.  This 

paper will give a brief outline of how 

FPGAs can be applied to computational 

biological problems and what FPGA 

tools are currently available to 

researchers in the life sciences field.   

 

Computational Challenges in 

Research   

 

Using traditional parallel software 

engineering techniques, research 

software must employ large numbers of 

general purpose processors (e.g. clusters) 

to complete complex operations within a 

prescribed timeframe. With the general 



leveling off of processor clock speeds 

and the corresponding end of Moore’s 

law as it applies to processor 

capabilities, new approaches are needed 

to reach the next level of computational 

performance.  FPGA technology has 

reached a state where performance gains 

in this technology are anticipated to 

exceed gains in general-purpose 

processors [Underwood and Hemmert, 

2004].  

 

Many bioinformatics applications have 

both shown and delivered on the promise 

of using FPGA technology to accelerate 

performance relative to a general 

purpose processor [Smith and Stahlberg 

2006; Fernando et al 2006; Regester et al 

2005; Bondhugula et al 2006]. The most 

prevalent successful implementation is 

the Smith-Waterman algorithm used to 

identify similarities among 

bioinformatics sequences. Speed-ups on 

the order of 30-fold have been reported 

for this algorithm [Regester et al 2005]. 

Graph network analysis implementations 

of the classic Floyd-Warshall algorithm 

have shown similar speedups 

[Bondhugula et al 2006].  

 

Another such example, a drug docking 

application that simulates the molecular 

interactions of a drug candidate in-silico, 

can benefit from highly parallel 

execution.  The code, written in C, will 

run the simulation of the atomic 

interactions.  Similar to molecular 

dynamics simulations, [Smith et al 2005] 

these docking simulation runs require 

algorithms to calculate the interaction 

energies of all pair-wise atom 

interactions.  This now becomes a 

massively parallel problem that is ideally 

suited for the FPGA.  The FPGA can be 

custom loaded with efficient data 

structures and algorithms specific to the 

atom to atom calculations that are 

required. 

 

Another challenge for scientific 

applications is the need to search 

through unstructured and semi-

structured data.  Much of this 

unstructured data is in the form of digital 

images. Efficiently searching through 

unstructured data (video, audio, 

instrument signals, etc.) requires special 

programming beyond that available in 

the standard SQL specification.  FPGA 

accelerated data searches have been 

shown to gain as much as a 40% 

increased speedup. 

 

Applying FPGAs to Meet these 

Challenges 

An FPGA is a semiconductor IC 

(Integrated Circuit) device containing 

programmable components that can be 

connected together to form digital logic 

circuits made up of basic gates, counters, 

adders, shift registers, flip-flops, 

memory and many other combinational, 

composite or sequential logic elements.  

These fundamental circuits can be 

interconnected to form entire digital 

systems on a programmable chip. 

FPGAs can increase the computational 

speed in scientific/biological 

calculations by acting as co-processors 

allowing conventional microprocessors 

(CPUs) to offload computationally 

expensive data processing.  During 

system initialization, the FPGA is 

programmed with a bit stream 

representing the hardware accelerator.  

This bit stream is used to configure the 

logic gates inside the FPGA, and 

implements a specific algorithm in 

hardware. Once the FPGA has been 

configured, the CPU can then send the 



data to be processed to the FPGA’s 

hardware-implemented algorithm, where 

the data is processed and the result is 

returned to the CPU.  When a different 

algorithm is required, the CPU simply 

reloads the FPGA with the appropriate 

bit stream which codes for the new 

algorithm and the device is ready to do 

an entirely different calculation using 

hardware. 

Emerging Approaches to FPGA 

Application Development 

 

Creating applications that involve FPGA 

acceleration requires different design 

methods and tools than traditional 

software design.  Scientific computation 

advantages can best be realized by 

providing a seamless integration path 

between the software application and the 

FPGA.  Using this approach, a domain 

scientist can focus on the science and 

research process rather than on the 

software/hardware interfacing and 

FPGA tool development. Fortunately, 

due to advances in FPGA compiler tools, 

the bit stream that codes the algorithmic 

computation can be programmed by the 

scientist/user using standard C 

programming techniques. 

 

Using standard C for application 

development has many advantages, not 

the least of which is the opportunity to 

use iterative, software-oriented methods 

of design optimization and debugging.  

With the Impulse C tools, for example, 

both hardware and software elements of 

the complete application can be 

described, partitioned and debugged 

using standard C programming tools 

such as GCC and GDB.  During this 

process, then application programmer 

can make use of familiar C-code 

optimizations to increase performance, 

without having a great deal of FPGA-

specific hardware knowledge. 

 

The resulting optimized C code is 

compiled by the FPGA development 

tools (in particular, the C-to-hardware 

compiler) to create a parallel 

hardware/software implementation.  The 

FPGA map, place and route tools then 

take the output from the compiler—that 

portion of the application representing 

the application accelerator(s)—and 

convert that into an FPGA bit stream. 

The bit stream is then loaded into the 

FPGA before computation is started. The 

complete C-to-hardware compilation 

process can be summarized as: 

 

• Describe the complete application in 

C language and use a standard C 

debugger to verify the algorithm. 

 

• Profile the application to find the 

computational “hot spots”. 

 

• Use data streaming, message passing 

and/or shared memory to partition 

the algorithm into multiple 

communicating software and 

hardware processes. 

 

• Use interactive optimization tools to 

analyze and improve the 

performance of hardware-accelerated 

functions. 

 

• Use a C-to-hardware compiler to 

generate synthesizable hardware, in 

the form of hardware description 

language files. 

 

• Export the generated hardware 

description files to the FPGA 

optimization and mapping tools. 

 



• Download the resulting FPGA 

bitmap to the target FPGA device. 

 

The only drawback to the above 

approach is that, because the FPGA 

circuitry is so dense, the FPGA mapping 

tools can require a considerable amount 

of compile time to finish. This, however, 

has no effect on the application run time 

because, once generated, the FPGA bit 

file can be stored on disk (or in some 

cases in Flash RAM) and reloaded as 

needed. 

 

On the hardware side, the FPGA is 

usually mounted to a PCI board that can 

be mounted into a high performance 

desktop or work station.  Accelerator 

board examples include the Nallatech 

BEN series of PCI boards and the 

Annapolis Micro Systems Wildforce 

series of PCI boards. Larger systems 

such as the Cray XD1, SRC Computers 

SRC-7 or the SGI RASC can have 

multiple nodes with multiple FPGAs and 

multiple CPUs.  These high performance 

hybrid parallel systems can take 

advantage of both the conventional 

microprocessors and the reconfigurable 

FPGA hardware resources to do the most 

efficient computing and partitioning of 

the hardware and software portions of 

the code to achieve maximum speedup.  

 

Ultimately, the system chosen should be 

the one that best suits the researcher’s 

needs. By looking at the ease of 

development of the tool sets, technical 

support available, the necessary data 

bandwidth, scalability, power 

consumption, price, communication 

among the nodes, number of FPGAs, 

number of microprocessors, clock speed, 

and the amount of memory, an 

appropriate system can be characterized 

and procured. 

On the software side, there are two 

primary challenges to address to be 

successful in FPGA application 

development. The first challenge to a 

new FPGA user is to define which 

algorithms can readily exploit FPGA 

fine-grained parallelism for the problem. 

These algorithms have historically 

proven to be those with low-level data 

parallelism and an absence of floating 

point operations.  More recently, floating 

point libraries have become available 

that promise to increase the range of 

candidate algorithms. 

 

Once a candidate algorithm has been 

identified, a second closely related 

challenge emerges in algorithm 

partitioning. In order to be successful 

with current hybrid architectures, the 

algorithm must generally be partitioned 

in a manner which minimizes the 

communication to the FPGA while 

maximizing the actual computation on 

the FPGA. 

 

Our experience with using a single 

FPGA on the Cray XD1 for a searching 

project proved that the concept of 

noninvasive interfacing an FPGA to an 

enterprise database system is entirely 

possible [Ryle et al 2005].  We were 

able to demonstrate a seamless 

integration strategy with a popular 

database environment (Oracle 10G on 

Solaris) and a programmable FPGA 

server (Cray XD1).  While using 

resource management frameworks such 

as the Sun Grid Engine, we wanted to 

demonstrate the feasibility of hardware 

resource sharing without first deploying 

more complicated grid and resource 

management infrastructures. In both 

deployment architectures, we were 

successful at application integration with 

a remote FPGA. This further 



demonstrates the ease in which an FPGA 

server can be integrated into a 

production database environment, with 

minimal disruption, for complex query 

search, development and optimization. 

 

The authors also have experience in 

implementing the Smith-Waterman 

algorithm on an FPGA and have seen 

publications boasting computational 

speedups of 64-fold over a conventional 

CPU implementation on the Cray XD1 

[Margerm 2006]. The Smith-Waterman 

algorithm is used in bioinformatics and 

uses dynamic programming concepts 

that will take an alignment of any length, 

and at any location, in any sequence, and 

determines whether there is an optimal 

alignment that can be found. 

 

Emerging Tools for Rapid FPGA 

Development  

 

The design approach starts with an 

analysis of the problem to determine 

which part of the problem is best suited 

to execution in the FPGA.  The program 

should be partitioned into software 

(executed by general-processors) and 

hardware (executed in the FPGA).  A 

likely candidate to load in hardware 

would be any part of the program that 

can be run in separate parallel threads or 

any routines that contain computational 

routines.  Keep in mind that data 

movement between these two partitions 

should be considered when deciding the 

partition divisions. In fact, using an 

FPGA for acceleration of certain 

algorithms can result in a simple shifting 

of the processing bottleneck from one of 

computation, to one of data movement. 

It is therefore important to make use of 

higher-level tools that support fast 

prototyping and iterative analysis. 

   

Programming tools to assist in FPGA 

application development are emerging 

from companies such as SRC, Impulse, 

Mitrionics, Nallatech, and DSPlogic.  

These tools allow programs written in C 

(or in C-like languages) to be converted 

into logic appropriate for FPGA 

mapping.  A complete tool flow, 

including software provided by the 

FPGA manufacturer, takes the C code 

through the map, route and place steps 

while creating an optimal FPGA routing. 

 

To allow increased use of statement-

level and system-level parallelism, these 

tools are supplied with functions 

(Impulse C), macros (Mitrionics) or 

directives (SRC) that can be referenced 

in the software code to interface with the 

hardware code, for example to set up and 

manage a streaming or shared memory 

interface. This is important because the 

design of software-to-hardware 

communications may have as great an 

impact on application performance as 

actual computation acceleration. 

 

Once the software code is compiled on 

general-processors and the hardware 

converted to bin modules and loaded 

into the FPGA, the two components—

hardware and software—interact through 

the generated interfaces. 

 

An international effort has started as a 

result of the diversity in approaches to 

FPGA application development. The 

effort, called OpenFPGA (see 

www.openfpga.org), is a cooperative 

effort among FPGA application users, 

FPGA manufacturers, and FPGA 

software vendors to ultimately 

standardize elements of the FPGA 

application to improve overall 

portability. At the present time, the effort 

has participation from over 300 



individuals worldwide in over 30 

countries [Stahlberg et al 2006]. In the 

near future, common approaches to 

FPGA application development are 

expected to emerge, easing further the 

effort required to create high-performing 

FPGA-enhanced applications. 

 

Summary 

 

In summary, we have shown that life 

science algorithms can take advantage of 

FPGAs as a viable resource to improve 

highly computationally expensive 

processing by moving expensive 

computations from the CPU and into the 

specifically designed logic inside the 

FPGA. Algorithms such as the Smith-

Waterman have shown significant speed 

improvement when implemented on a 

FPGA while integration to current 

infrastructure such as databases is 

possible. FPGAs are becoming easier to 

use as the development tools get better 

and as the prices on FPGAs falls as 

smaller/denser chip manufacturing 

technology becomes available, thus 

making them affordable to use in more 

computing applications. Support is also 

increasing as FPGAs now have the 

attention of world-wide computer 

scientist and developers though 

OpenFPGA where standards are being 

derived to open up FPGA use for a wide 

range of high level applications. 
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